Mastering machine learning algorithms isn’t a myth at all. Most beginners start by learning regression. It is simple to learn and use, but does that solve our purpose? Of course not! Because there is a lot more in ML beyond logistic regression and regression problems! For instance, have you heard of support vector regression and support vector machines algorithm or SVM?
Think of machine learning algorithms as an armory packed with axes, swords, blades, bows, daggers, etc. You have various tools, but you ought to learn to use them at the right time. As an analogy, think of ‘Regression’ as a sword capable of slicing and dicing data efficiently but incapable of dealing with highly complex data. That is where ‘Support Vector Machines’ acts like a sharp knife – it works on smaller datasets, but on complex ones, it can be much stronger and more powerful in building machine learning models.
In this article, you will get an understanding of Support Vector Machines (SVM), a widely used algorithm in machine learning. SVM is particularly effective as an SVM classifier, excelling at classification tasks by finding optimal hyperplanes to separate data. We will explore how SVM works and its applications in various domains.
Learning Objectives
“Support Vector Machine” (SVM) is a supervised learning machine learning algorithm that can be used for both classification or regression challenges. However, it is mostly used in classification problems, such as text classification. In the SVM algorithm, we plot each data item as a point in n-dimensional space (where n is the number of features you have), with the value of each feature being the value of a particular coordinate. Then, we perform classification by finding the optimal hyper-plane that differentiates the two classes very well (look at the below snapshot).
Support Vectors are simply the coordinates of individual observation, and a hyper-plane is a form of SVM visualization. The SVM classifier is a frontier that best segregates the two classes (hyper-plane/line).
Above, we got accustomed to the process of segregating the two classes with a hyper-plane. Now the burning question is, “How can we identify the right hyper-plane?”. Don’t worry; it’s not as hard as you think! Let’s understand:
In the above plot, points to consider are:
In the SVM classifier, having a linear hyper-plane between these two classes is easy. But, another burning question that arises is if we should we need to add this feature manually to have a hyper-plane. No, the SVM algorithm has a technique called the kernel trick. The SVM kernel transforms low-dimensional input space to a higher dimensional space, making non-separable problems separable, useful for non-linear data separation by applying complex data transformations based on labels.
When we look at the hyper-plane in the original input space, it looks like a circle:
Now, let’s look at the methods to apply the SVM classifier algorithm in a data science challenge.
You can also learn about the working of a Support Vector Machine in data mining video format from this Machine Learning certification course.
In an SVM, a hyperplane is a decision boundary that separates different classes of data points. For instance, in a two-dimensional space, the hyperplane is a line; in a three-dimensional space, it is a plane. The goal of the SVM is to find the optimal hyperplane that maximizes the margin between the classes. The margin is defined as the distance between the hyperplane and the nearest data points from either class.
Support vectors are the data points that are closest to the hyperplane. These points are critical because they determine the position and orientation of the hyperplane. If you remove a support vector, it can change the hyperplane’s position.
Linear SVM is used when the data is linearly separable, which means that the classes can be separated with a straight line (in 2D) or a flat plane (in 3D). The SVM algorithm finds the hyperplane that best divides the data into classes.
Non-Linear SVM is used when the data is not linearly separable. In such cases, SVM employs kernel functions to transform the data into a higher-dimensional space where a linear separation is possible. The algorithm then finds the optimal hyperplane in this new space.
Kernels are functions that take low-dimensional input space and transform it into a higher-dimensional space. SVM can create complex decision boundaries by using kernel functions. Here are some popular kernel functions:
Used when the data is linearly separable.
Where c is a constant, and d is the degree of the polynomial. This kernel is useful for classifying data with polynomial relationships.
Where γ is a parameter that defines the influence of a single training example. This is one of the most popular kernels for non-linear data.
Where α and care kernel parameters. It behaves like a neural network’s activation function.
In Python, scikit-learn is a widely used library for implementing machine learning algorithms. SVM algorithm is also available in the scikit-learn library, and we follow the same structure for using it(Import library, object creation, fitting model, and prediction).
Now, let us have a look at a real-life problem statement and dataset to understand how to apply SVM for classification.
Dream Housing Finance company deals in all home loans. They have a presence across all urban, semi-urban, and rural areas. A customer first applies for a home loan; after that, the company validates the customer’s eligibility for a loan.
The company wants to automate the loan eligibility process (real-time) based on customer details provided while filling out an online application form. These details are Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History, and others. To automate this process, they have given a problem of identifying the customers’ segments that are eligible for loan amounts so that they can specifically target these customers. Here they have provided a partial data set.
Use the coding window below to predict the loan eligibility on the test set(new data). Try changing the hyperparameters for the linear SVM to improve the accuracy.
The e1071 package in R is used to create Support Vector Machine in data mining with ease. It has helper functions as well as code for the Naive Bayes Classifier. The creation of a support vector machine algorithm in R and Python follows similar approaches; let’s take a look now at the following code:
#Import Library
require(e1071) #Contains the SVM
Train <- read.csv(file.choose())
Test <- read.csv(file.choose())
# there are various options associated with SVM training; like changing kernel, gamma and C value.
# create model
model <- svm(Target~Predictor1+Predictor2+Predictor3,data=Train,kernel='linear',gamma=0.2,cost=100)
#Predict Output
preds <- predict(model,Test)
table(preds)
Tuning the parameters’ values for machine learning algorithms effectively improves model performance. Therefore, let’s look at the list of parameters available with SVM.
sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
I am going to discuss some important parameters having a higher impact on model performance, “kernel,” “gamma,” and “C.”
kernel: We have already discussed it. Here, we have various options available with kernel like “linear,” “rbf”, ”poly”, and others (default value is “rbf”). Here “rbf”(radial basis function) and “poly”(polynomial kernel) are useful for non-linear hyper-plane. It’s called nonlinear svm. Let’s look at the example where we’ve used linear kernel on two features of the iris data set to classify their class.
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=1,gamma=0).fit(X, y)
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.title('SVC with linear kernel')
plt.show()
Change the kernel function type to rbf in the below line and look at the impact.
svc = svm.SVC(kernel='rbf', C=1,gamma=0).fit(X, y)
I would suggest you go for a linear SVM kernel if you have a large number of features (>1000) because it is more likely that the data is linearly separable in high dimensional space. Also, you can use RBF but do not forget to cross-validate for its parameters to avoid over-fitting.
gamma: Kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid.’ The higher value of gamma will try to fit them exactly as per the training data set, i.e., generalization error and cause over-fitting problem.
svc = svm.SVC(kernel=’rbf’, C=1,gamma=0).fit(X, y)
C: Penalty parameter C of the error term. It also controls the trade-off between smooth decision boundaries and classifying the training points correctly.
We should always look at the cross-validation score to effectively combine these parameters and avoid over-fitting.
In R, SVMs algorithm can be tuned in a similar fashion as they are in Python. Mentioned below are the respective parameters for the e1071 package:
Pros:
Cons:
Find the right additional feature to have a hyper-plane for segregating the classes in the below snapshot:
Answer the variable name in the comments section below. I’ll then reveal the answer.
In this article, we looked at the machine learning algorithm, Support Vector Machine, in detail. We discussed the concept of its working, the process of its implementation in python and R, and the tricks to make the model more efficient by tuning its parameters. Towards the end, we also pointed out the pros and cons of the algorithm. I suggest you try solving the problem above to practice your SVM algorithm skills and also try to analyze the power of this model by tuning the parameters.
Hope you found this information on Support Vector Machines, SVM classifiers, and their role in machine learning helpful and engaging!
Key Takeaways
A. Support vector machines (SVM) are supervised learning models used for classification and regression tasks. For instance, they can classify emails as spam or not spam. Additionally, they can be used to identify handwritten digits in image recognition.
A. The principle of SVM involves finding the hyperplane that best separates different classes of data. Essentially, it maximizes the margin between the closest points of the classes, thereby ensuring robust classification.
A. The function of SVM is to classify data by finding the optimal hyperplane that separates different classes. Consequently, it works well for both linear and non-linear classification problems by transforming data using kernel functions.
A. It is called a support vector machine because it relies on support vectors, which are the data points closest to the hyperplane. These support vectors are critical as they define the position and orientation of the hyperplane, thus influencing the model’s accuracy.
Lorem ipsum dolor sit amet, consectetur adipiscing elit,