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Abstraction 

•  Ignore information irrelevant for the task at hand. 
•  Form simpler representation. 
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Abstraction 
•  A key reason that humans are effective problem 

solvers 
–  Learn and plan at a higher level 
–  Knowledge transfer 
–  c.f. macros, chunks, skills, behaviors, . . . 

 
•  Temporal abstraction or plan abstraction 
•  Spatial abstraction 
•  Combination of the two 

Motivation 
•  Well studied problem in AI 
•  Focus of thesis: 

–  Decision theoretic setting 
•  Markov decision processes 

–  General framework 
•  Accommodate different notions of abstraction  

–  Aggregation, symmetry (Zinkevich and Balch ’01, 
Popplestone and Grupen ’00), projections, structured 
abstractions (Boutilier et al. ’94, ’95, ’01) 

–  Formal algebraic framework 
•  Group theory, model minimization, operations research 

–  Combination of temporal and spatial abstraction 
•  Behaviors in a relative frame of reference 

–  Efficient knowledge transfer 

Outline of Thesis 
•  Abstraction in decision making 

–  Algebraic framework  
–  Exploiting symmetry and structure 
–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 
–  Hierarchical task decomposition 
–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 
•  Deictic representation 
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Outline of Talk 
•  Abstraction in decision making 

–  Algebraic framework  

–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 

–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 

–  Summary 
 

Outline of Talk 
•  Abstraction in decision making 

–  Algebraic framework  
 

–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 

–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 

–  Summary 
 

•   Markov Decision Processes 
•   MDP homomorphisms 
•   Some theoretical results 

Markov Decision Processes 

•   MDP, M, is the tuple:    
–  S : set of states. 
– A : set of actions. 
–         : set of admissible state-action pairs. 
–                           : probability of transition. 
–                  : expected reward. 

•  Policy                  (can be stochastic)                                                        
•  Maximize total expected reward. 
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MDP Homomorphism 
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State dependent action recoding 

Some Theoretical Results 

•  Optimal Value equivalence:  
    If                                then 
•    
 

     
•  Solve homomorphic image and lift the policy to 

the original MDP. 
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[generalizing those of Dean and Givan, 1997] 

Theorem: If          is a homomorphic image of       ,  
then a policy optimal in         induces an optimal  
policy in       . 
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Model Minimization 

•  Finding reduced models that preserve some aspects of 
the original model 

•  Various  modeling paradigms 
–  Finite State Automata (Hartmanis and Stearns ’66) 

•  Transition Behavior 

–  Model Checking (Emerson and Sistla ’96, Lee and Yannakakis 
’92) 

•  Correctness of system models 

–  Markov Chains (Kemeny and Snell ’60) 
•  Steady state distribution 

–  MDPs (Dean and Givan ’97, Ravindran and Barto ’02) 
•  Optimal solutions 

MDP Minimization 

•  In general, NP-hard 
– Polynomial time algorithm for computing 

homomorphic image, under certain assumptions 
•  Extends Dean and Givan ’97, Lee and Yannakakis ’92  

 
•  State dependent action recoding 

– Greater reduction in problem size 
– Model symmetries 

•  Reflections, rotations, permutations 

Outline of Talk 
•  Abstraction in decision making 

–  Algebraic framework  

–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 

–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 

–  Summary 
 

•  Approximate homomorphisms 
•  Error bounds 
•  Bounded parameter approximations 
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 Approximate Notions of Equivalence 
•  Complete and exact equivalence often do not 

exist. 
•  Approximate equivalence. 
– “Equivalent” state-action pairs have nearly same 

behavior. 

Approximate Homomorphisms 

•  Use averages 
•  Relax homomorphism criteria: 

–                                        = 

– Compute                    for all (s, a) 

– Similar computation for the reward function.  
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Example 

Task is to reach red goal area. 

Approximate Image 

Error Bound 

•  Approximate homomorphism between arbitrarily 
different  MDPs! 

•  Useful when loss in performance is acceptable. 
•  Bound the maximum difference in optimal value 

function in M and the value of the lifted optimal 
policy. 
–  Specializes Whitt ’78. 
–  Function of maximum difference in the probabilities 

and rewards that are averaged. 

Error bound (cont.) 
•      – maximum difference between  
        and   

•      – corresponding difference in reward 
•      – the range of the reward function 
•      – the discount factor,  
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Bounded Parameter Approximation 

•  Model as a map onto a Bounded-parameter 
MDP (Givan, Leach and Dean ’00) 

– Transition probabilities and rewards given by 
bounded intervals 

– Upper and lower bounds on optimal values of 
states 

– Loose bounds 
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Example Revisited 

Approximate Image 
Optimistic Case Pessimistic Case 

Outline of Talk 
•  Abstraction in decision making 

–  Algebraic framework  

–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 

–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 

–  Summary 
 

•  Semi-Markov decision processes 
•  Options framework 
•  Relativized options 

(discrete-time) semi-Markov 
Decision Process  

•  SMDP, M, is the tuple:    
–  S : set of states. 
– A : set of actions. 
–         : set of admissible state-action pairs. 
–                                  : transition probabilities. 
–                           : expected reward. 

•  Policy (stationary, stochastic):                                                       
•  Maximize expected return. 
•  Generalize MDP homomorphism. 
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Hierarchical Reinforcement Learning 

Options (Sutton, Precup, & Singh, 1999): A generalization of  
actions  to include temporally-extended courses of action 
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Example: robot docking 
 
���  : pre-defined controller 

  �  : terminate when docked or charger not visible 

I : all states in which charger is in sight 
o 

•  Task is to collect all 
objects in the world 

•  5 options – one for 
each room. 

•  Markov, subgoal 
options 

•  Implicitly define 
option policy 

•  Employ option 
specific abstraction 

Sub-goal Options  Relativized Options 

  Relativized option: 

          : Option homomorphism. 
          : Option SMDP. (Image of h.) 

              : Initiation set. 
                             : Termination criterion. 
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•  Task is to collect all 
objects in the world 

•  5 options – one for 
each room 

•  Single relativized 
option – get-object-
exit-room 

•  Partial homomorphism 
•  Especially useful 

when learning option 
policy 
–  Speed up. 
–  Knowledge transfer. 

Rooms world task  Experimental Setup 

•  Regular Agent 
–  5 options, one for each room 
– Option reward of  +1 on exiting room with 

object 
•  Relativized Agent 

–  1 relativized option, known homomorphism 
– Same option reward 

•  Global reward of +1 on completing task 
•  Actions fail with probability 0.1 

Learning Algorithm 

•  Hierarchical SMDP Q-learning (Dietterich ’00b) 
– Q-learning at the lowest level (Watkins ’89) 

– SMDP Q-learning at the higher levels (Bradtke and 
Duff ’95) 

•  Simultaneous learning at all levels 
– Converges to recursively optimal policy 

•  Using results from Dietterich ’00a 
 

Results 

•  Average over 100 runs 

Asymmetric Testbed Results – Asymmetric Testbed 

•  Still significant speed up in initial learning 
•  Asymptotic performance slightly worse 
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Outline of Talk 
•  Abstraction in decision making 

–  Algebraic framework  

–  Approximate equivalence 

•  Abstraction in hierarchical reinforcement learning 

–  Relativized options 
–  Algorithms for dynamic abstraction 

•  Choosing transformations 

–  Summary 
 

Choosing Transformations  
Motivation 

•  Relax prior knowledge requirement 
– Unknown homomorphism 

•  Option SMDP and policy can be viewed as 
a policy schema (Schmidt ’75, Arbib ’95) 

– Template of a policy 
– Acquire schema in a prototypical setting 
– Learn bindings of sensory inputs and actions to 

schema  
•  Assume set of possible bindings available 

Choosing Transformations  
Problem Formulation 

•  Given: 
–                          of a relativized option 
–           , a family of transformations 

•  Identify the option homomorphism   
•  Formulate as a parameter estimation 

problem 
– One parameter, takes values from H 
– Samples:  
– Bayesian learning 

β,, IMO
H

h

!,,,, 2211 asas

Choosing Transformations 
Algorithm 

•  Assume uniform prior:  
•  Experience: 

•  Update Posteriors:  

 

),(0 shp

1,, +nnn sas

( )
Factor gNormalizin

),()(),(),(
),( 11 shpsfagsfP
shp nnnsnO

n
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•  Train in room 1  
•  8 candidate 

transformations 
– Reflections about x 

and y axes and the 
x=y and x=-y lines 

– Rotations by integer 
multiples of 90 
degrees 

Rooms world task  Results – Speed of convergence 

•  Not much of a difference since the task is too easy 
•  Correct transformation identified in 15 iterations 
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Choosing Transformations 
Approximate Equivalence 

•  More complex domains 
•  Problem with Bayesian update 

– Use prototypical room as option schema 
– Susceptible to incorrect samples 

•  Use a heuristic lower bound 

Example 

( )
Factor gNormalizin

),()(),(),(
),( 11 shpsfagsfP
shp nnnsnO

n
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=

Choosing Transformations 
Heuristic Update Rule 

( )
Factor gNormalizin
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•  Use a heuristic update rule: 

( )
constant. positive small a is    and

)',,(,max)',,( where,
ν

ν= sasPsasP O

Complex Game World 

•  Gather all 4 diamonds in the world 
•                 states 
•  40 transformations 

–  8 spatial transformations combined with 5 projections 

551025×

Experimental Setup 

•  Regular agent 
–  4 sub-goal options  

•  Relativized agent 
– Uses option MDP shown earlier  
– Chooses from 40 transformations 

•  Room 2 has no right transformation 
•  Hierarchical SMDP Q-learning 

Results 
Speed of Convergence 

•  Learning the policy is more difficult than 
learning the correct transformation! 
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Results 
Transformation Weights in Room 4 

•  Transformation 12 eventually converges to 1 

Results 
Transformation Weights in Room 2 

•  Weights oscillate a lot 
•  Some transformation dominates eventually 

–  Changes from one run to another 

Choosing Transformations 

•  Related work 
–  Multiple forward models (Haruno et al. ’01, Doya et al. ‘02) 

–  Dynamic control models (Coelho and Grupen ’98) 

–  Variably bound controllers (Huber and Grupen ’99) 
 

•  Representations can be designed to implicitly 
perform transformations 
–  Formalizes such representations 
–  E.g. Deictic representations 

Summary of Contributions 
•  Developed an abstraction framework for 

MDPs 
–  Introduced MDP homomorphisms 

•  State dependent action recoding 
– Theoretical results 

•  Approximate homomorphisms 
– Bound maximum loss 
– Upper and lower bound performance  

Summary of Contributions 
(cont.) 

•  Abstraction in hierarchical systems 
– Relativized options 

•  An option defined in a relative frame of reference 
•  Uses partial homomorphisms 

– Policy schema 
•  Policy template 

– Bayesian algorithm for choosing the right 
bindings 

•  Heuristic modification for approximate equivalence 
•  Complex game domain 

Other Contributions 
•  Exploiting structure and symmetry 

–  Structured morphisms 
–  Symmetry groups 

•  Reflections, rotations and permutations 

–  Polynomial time algorithm  

•  Hierarchical decomposition framework 
–  Based on SMDP homomorphisms 
–  Relation to safe state abstraction (Dietterich ’00a) 

•  Deictic option schema 
–  Representation based on pointers (Agre ’88) 

–  Modification of Bayesian algorithm  
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Future Work 
 
•  Practical application of framework 

– Humanoid experiments 
•  Abstraction algorithms 

– Symbolic representations (Feng et al. ’02,’03) 

•  Relation to partial observability 
•  Relation to other abstract representations 

– Probabilistic relational models (Getoor et al. ’01 


