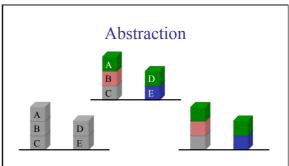
An Algebraic Approach to Abstraction in Reinforcement Learning

Doctoral Dissertation Defense

Balaraman Ravindran

Advisor: Andrew G. Barto Committee: Roderic A. Grupen Sridhar Mahadevan

Neil E. Berthier (Dept. of Psychology)



- · Ignore information irrelevant for the task at hand.
- · Form simpler representation.

Abstraction

- A key reason that humans are effective problem solvers
 - Learn and plan at a higher level
 - Knowledge transfer
 - c.f. macros, chunks, skills, behaviors, \ldots
- · Temporal abstraction or plan abstraction
- · Spatial abstraction
- · Combination of the two

Motivation

- · Well studied problem in AI
- · Focus of thesis:
 - Decision theoretic setting
 - Markov decision processes
 - General framework

 - Accommodate different notions of abstraction
 Aggregation, symmetry (Zinkevich and Balch '01, Popplestone and Grupen '00), projections, structured abstractions (Boutilier et al. '94, '95, '01)
 - Formal algebraic framework
 - Group theory, model minimization, operations research
 - Combination of temporal and spatial abstraction
 - · Behaviors in a relative frame of reference
 - Efficient knowledge transfer

Outline of Thesis

- · Abstraction in decision making
 - Algebraic framework
 - Exploiting symmetry and structure
 - Approximate equivalence
- · Abstraction in hierarchical reinforcement learning
 - Hierarchical task decomposition
 - Relativized options
 - Algorithms for dynamic abstraction
 - · Choosing transformations
 - · Deictic representation

Outline of Thesis

- · Abstraction in decision making
- Algebraic framework
 - Exploiting symmetry and structure
- Approximate equivalence
- Abstraction in hierarchical reinforcement learning
 - Hierarchical task decomposition
- Relativized options
 - Algorithms for dynamic abstraction
- · Choosing transformations
 - · Deictic representation

Outline of Talk

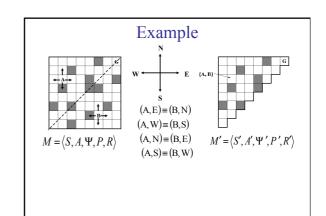
- · Abstraction in decision making
- Algebraic framework
- Approximate equivalence
- · Abstraction in hierarchical reinforcement learning
- Relativized options
 - Algorithms for dynamic abstraction
- · Choosing transformation
 - Summary

Outline of Talk

- Abstraction in decision making
- Algebraic framework
- · Markov Decision Processes
- MDP homomorphisms · Some theoretical results
- Approximate equivalence
- · Abstraction in hierarchical reinforcement learning
 - Relativized options
 - Algorithms for dynamic abstraction
 - · Choosing transformations
 - Summary

Markov Decision Processes

- MDP, M, is the tuple: $M = \langle S, A, \Psi, P, R \rangle$
 - -S: set of states.
 - -A: set of actions.
 - $-\Psi\subseteq S\times A$: set of admissible state-action pairs.
 - *P*:Ψ×*S* →[0,1]: probability of transition.
 - $-R: \Psi \rightarrow \Re$: expected reward.
- Policy $\pi: S \to A$ (can be stochastic)
- Maximize total expected reward.



Homomorphisms

Group homomorphism

Let G and G' be groups with operations + and +'respectively

 $h: G \to G'$ is a group homomorphism iff $h(x+y) = h(x) + h(y) \quad \forall x, y \in G$

$$G \times G \xrightarrow{+} G$$

$$h \times h \mid \qquad h \mid$$

$$G' \times G' \xrightarrow{+'} G'$$

Homomorphisms (cont.)

Automaton homomorphism

in the autonomous case:

$$M = \langle S, \delta \rangle, \quad M' = \langle S', \delta' \rangle$$
state set
$$S \xrightarrow{\delta} S$$

$$S \xrightarrow{(h(s))} b \mid b \mid$$

$$h(\delta(s)) = \delta'(h(s)) \qquad h \mid h \mid h \mid$$

$$S \xrightarrow{\delta'} S$$

induces equivalence cla\$sesin S

MDP Homomorphism

MDPs $M = \langle S, A, \Psi, P, R \rangle$, $M' = \langle S', A', \Psi', P', R' \rangle$

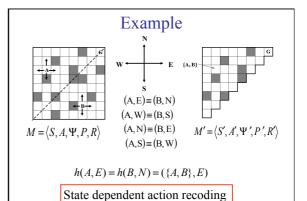
surjection $h: \Psi \to \Psi'$ defined by $h((s,a)) = (f(s), g_s(a))$ where: $f: S \to S', g_s: A_s \to A'_{f(s)}$, for all $s \in S$, are surjections such that for all $s, \overline{s} \in S$, and $a \in A_s$:

(1)
$$P'(f(s),g_s(a),f(\overline{s})) = \sum_{t \in [\overline{s}]} P(s,a,t)$$

(2) $R'(f(s),g_s(a))=R(s,a)$

$$(s,a) \stackrel{R}{\longmapsto} \tilde{h}$$

$$\downarrow h \qquad \qquad k' \qquad k' \qquad k' \qquad k' \qquad \qquad k' \qquad \qquad k' \qquad k'$$



Some Theoretical Results

[generalizing those of Dean and Givan, 1997]

- Optimal Value equivalence: If h(s,a) = (s',a') then $Q^*(s,a) = Q^*(s',a')$.
- Corollary:

If
$$h(s_1, a_1) = h(s_2, a_2)$$
 then $Q^*(s_1, a_1) = Q^*(s_2, a_2)$.

Theorem: If M' is a homomorphic image of M, then a policy optimal in M' induces an optimal policy in M.

• Solve homomorphic image and lift the policy to the original MDP.

Model Minimization

- Finding reduced models that preserve some aspects of the original model
- · Various modeling paradigms
 - Finite State Automata (Hartmanis and Stearns '66)
 - · Transition Behavior
 - Model Checking (Emerson and Sistla '96, Lee and Yannakakis 92)
 - · Correctness of system models
 - Markov Chains (Kemeny and Snell '60)
 - · Steady state distribution
 - MDPs (Dean and Givan '97, Ravindran and Barto '02)
 - · Optimal solutions

MDP Minimization

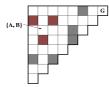
- · In general, NP-hard
 - Polynomial time algorithm for computing homomorphic image, under certain assumptions
- · State dependent action recoding
 - Greater reduction in problem size
 - Model symmetries
 - Reflections, rotations, permutations

Outline of Talk

- · Abstraction in decision making
 - Algebraic framework
- · Approximate homomorphisms
- Error bounds
- Approximate equivalence Bounded parameter approximations
- Abstraction in hierarchical reinforcement learning
 - Relativized options
 - Algorithms for dynamic abstraction
 - · Choosing transformations
 - Summary

Approximate Notions of Equivalence

- Complete and exact equivalence often do not exist.
- Approximate equivalence.
 - "Equivalent" state-action pairs have nearly same behavior



Approximate Homomorphisms

- Use averages
- Relax homomorphism criteria:

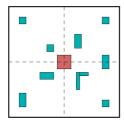
$$-P'(f(s),g_s(a),f(\bar{s})) = \sum_{t \in \bar{s}} P(s,a,t)$$

- Compute
$$\sum_{s \in \mathbb{R}} P(s, a, t)$$
 for all (s, a)

$$P'\!\!\left(f(s),g_s(a),f(\bar{s})\right) = \frac{1}{\left|\left[(s,a)\right]_h\right|} \sum_{(q,b) \in \left[(s,a)\right]_h} \sum_{t \in \left[\bar{s}\right]_f} P(q,b,t)$$

- Similar computation for the reward function.

Example



Task is to reach red goal area.

Error Bound

- Approximate homomorphism between arbitrarily different MDPs!
- Useful when loss in performance is acceptable.
- Bound the maximum difference in optimal value function in M and the value of the lifted optimal policy.
 - Specializes Whitt '78.
 - Function of maximum difference in the probabilities and rewards that are averaged.

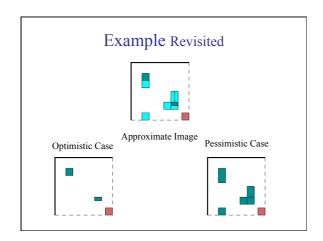
Error bound (cont.)

- K_p maximum difference between $P'(f(s), g_s(a), f(\overline{s}))$ and $\sum_{s \in [\overline{s}]_f} P(s, a, t)$
- K_r corresponding difference in reward
- Δ the range of the reward function
- γ the discount factor, $0 \le \gamma < 1$

$$\left\| V^* - V'^* \right\|_{\max} \le \frac{2}{1 - \gamma} \left(K_r + \frac{\gamma}{1 - \gamma} \Delta \frac{K_p}{2} \right)$$

Bounded Parameter Approximation

- Model as a map onto a *Bounded-parameter MDP* (Givan, Leach and Dean '00)
 - Transition probabilities and rewards given by bounded intervals
 - Upper and lower bounds on optimal values of states
 - Loose bounds



Outline of Talk

- · Abstraction in decision making
 - Algebraic framework
 - Approximate equivalence
- Abstraction in hierarchical reinforcement learning
- Relativized options
- Options framework
- Relativized options
 Algorithms for dynamic abstraction

 - · Choosing transformations
- Summary

(discrete-time) semi-Markov **Decision Process**

- SMDP, M, is the tuple: $M = \langle S, A, \Psi, P, R \rangle$
 - -S: set of states.
 - -A: set of actions.
 - $-\Psi$ ⊆ $S \times A$: set of admissible state-action pairs.
 - *P*: Ψ× S×N → [0,1] : transition probabilities.
 - $R: \Psi \times N \rightarrow \Re$: expected reward.
- Policy (stationary, stochastic): $\pi: \Psi \to [0,1]$
- Maximize expected return.
- Generalize MDP homomorphism.

Hierarchical Reinforcement Learning

Options (Sutton, Precup, & Singh, 1999): A generalization of actions to include temporally-extended courses of action

An option is a triple $o = \langle I, \pi_o, \beta \rangle$

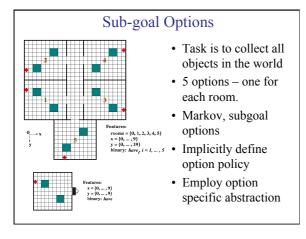
- \bullet $I \subseteq S$ is the set of states in which o may be started
- π_o : $\Psi \rightarrow [0,1]$ is the (stochastic) policy followed during o
- $\beta: S \to [0,1]$ is the probability of terminating in each state

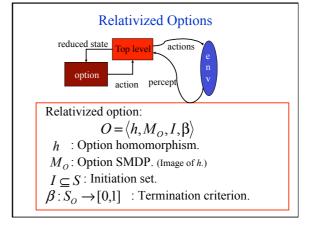
Example: robot docking

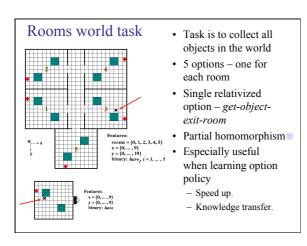
I: all states in which charger is in sight

[7] [7]: pre-defined controller

2 : terminate when docked or charger not visible





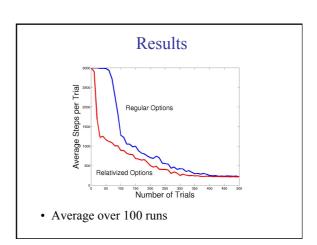


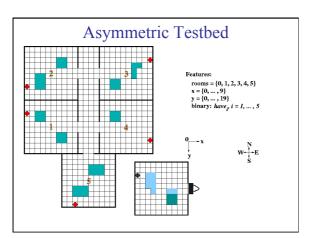
Experimental Setup

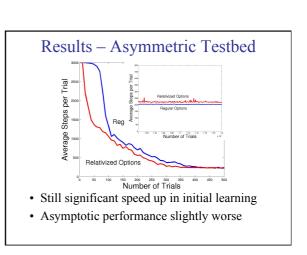
- Regular Agent
 - 5 options, one for each room
 - Option reward of +1 on exiting room with object
- · Relativized Agent
 - 1 relativized option, known homomorphism
 - Same option reward
- Global reward of +1 on completing task
- Actions fail with probability 0.1

Learning Algorithm

- Hierarchical SMDP Q-learning (Dietterich '00b)
 - Q-learning at the lowest level (Watkins '89)
 - SMDP Q-learning at the higher levels (Bradtke and
- Simultaneous learning at all levels
 - Converges to recursively optimal policy
 - Using results from Dietterich '00a







Outline of Talk

- · Abstraction in decision making
 - Algebraic framework
 - Approximate equivalence
- · Abstraction in hierarchical reinforcement learning
 - Relativized options
 - Algorithms for dynamic abstraction
 - Choosing transformations
 - Summary

Choosing Transformations Motivation

- Relax prior knowledge requirement
- Unknown homomorphism
- Option SMDP and policy can be viewed as a *policy schema* (Schmidt '75, Arbib '95)
 - Template of a policy
 - Acquire schema in a prototypical setting
 - Learn bindings of sensory inputs and actions to schema
- Assume set of possible bindings available

Choosing Transformations Problem Formulation

- Given:
 - M_O, I, β of a relativized option
 - -H, a family of transformations
- Identify the option homomorphism h
- Formulate as a parameter estimation problem
 - One parameter, takes values from H
 - Samples: $\langle s_1, a_1, s_2, a_2, \cdots \rangle$
 - Bayesian learning

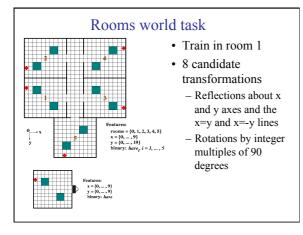
Choosing Transformations Algorithm

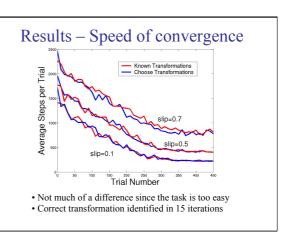
- Assume uniform prior: $p_0(h, \bar{s})$
- Experience: $\langle s_n, a_n, s_{n+1} \rangle$

$$P(\langle s_n, a_n, s_{n+1} \rangle | h, \bar{s}) = P_O(f(s_n), g_{s_n}(a_n), f(s_{n+1}))$$

• Update Posteriors:

$$p_n(h, \bar{s}) = \frac{P_O(f(s_n), g_{s_n}(a_n), f(s_{n+1})) \cdot p_{n-1}(h, \bar{s})}{\text{Normalizing Factor}}$$

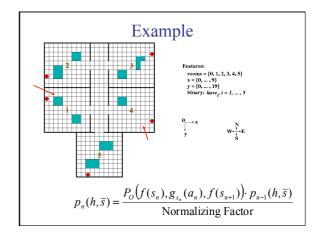




Choosing Transformations

Approximate Equivalence

- More complex domains
- · Problem with Bayesian update
 - Use prototypical room as option schema
 - Susceptible to incorrect samples
- Use a heuristic lower bound



Choosing Transformations

Heuristic Update Rule

• Use a heuristic update rule:

$$w_n(h, \bar{s}) = \frac{\overline{P}(f(s_n), g_{s_n}(a_n), f(s_{n+1})) \cdot w_{n-1}(h, \bar{s})}{\text{Normalizing Factor}}$$

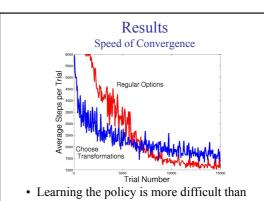
where, $\overline{P}(s, a, s') = \max(v, P_O(s, a, s'))$ and v is a small positive constant.

Complex Game World

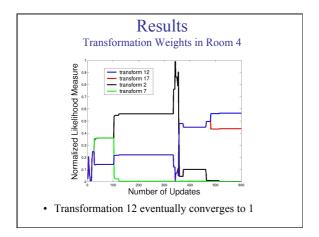
- Gather all 4 diamonds in the world
- 25×10⁵⁵ states
- 40 transformations
 - 8 spatial transformations combined with 5 projections

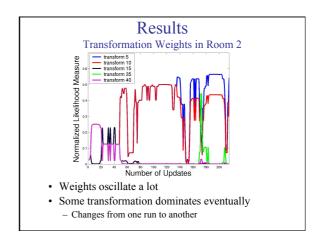
Experimental Setup

- Regular agent
 - 4 sub-goal options
- · Relativized agent
 - Uses option MDP shown earlier
 - Chooses from 40 transformations
- Room 2 has no right transformation
- Hierarchical SMDP Q-learning



learning the correct transformation!





Choosing Transformations

- · Related work
 - Multiple forward models (Haruno et al. '01, Doya et al. '02)
 - Dynamic control models (Coelho and Grupen '98)
 - Variably bound controllers (Huber and Grupen '99)
- Representations can be designed to implicitly perform transformations
 - Formalizes such representations
 - E.g. Deictic representations

Summary of Contributions

- Developed an abstraction framework for MDPs
 - Introduced MDP homomorphisms
 - · State dependent action recoding
 - Theoretical results
- Approximate homomorphisms
 - Bound maximum loss
 - Upper and lower bound performance

Summary of Contributions (cont.)

- · Abstraction in hierarchical systems
 - Relativized options
 - An option defined in a relative frame of reference
 - Uses partial homomorphisms
 - Policy schema
 - · Policy template
 - Bayesian algorithm for choosing the right bindings
 - Heuristic modification for approximate equivalence
 - Complex game domain

Other Contributions

- Exploiting structure and symmetry
 - Structured morphisms
 - Symmetry groups
 - Reflections, rotations and permutations
 - Polynomial time algorithm
- Hierarchical decomposition framework
 - Based on SMDP homomorphisms
 - Relation to safe state abstraction (Dietterich '00a)
- Deictic option schema
 - Representation based on pointers (Agre '88)
 - Modification of Bayesian algorithm

Future Work

- Practical application of framework
 - Humanoid experiments
- Abstraction algorithms
 - $\ Symbolic \ representations \ (Feng \ et \ al. \ '02, '03)$
- Relation to partial observability
- Relation to other abstract representations
 - Probabilistic relational models (Getoor et al. '01