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Abstraction

A key reason that humans are effective problem
solvers

— Learn and plan at a higher level
— Knowledge transfer

— c.f. macros, chunks, skills, behaviors, . . .

» Temporal abstraction or plan abstraction
» Spatial abstraction
* Combination of the two

Abstraction

« Ignore information irrelevant for the task at hand.
¢ Form simpler representation.

Motivation

Well studied problem in Al
Focus of thesis:
— Decision theoretic setting
* Markov decision processes
— General framework
+ Accommodate different notions of abstraction

— Aggregation, symmetry (Zinkevich and Balch 01,
Popplestone and Grupen ’ 00), projections, structured
abstractions (Boutilier et al. " 94, " 95, 01)

— Formal algebraic framework
* Group theory, model minimization, operations research
— Combination of temporal and spatial abstraction
* Behaviors in a relative frame of reference
— Efficient knowledge transfer
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Markov Decision Processes
* MDP, MM, is the tuple: M=<S,A,‘P,P,R>

— §: set of states.
— A : set of actions.
— W< 5%4 : set of admissible state-action pairs.
— P:¥xS—[0]] : probability of transition.
— R:¥ - R: expected reward.
 Policy m:S—4 (can be stochastic)
* Maximize total expected reward.

Example

(A EL (B,N)
(A W)=(B,5)

)=(B.E)  '=(S'4,¥,PR)
(A.8)=(B,W)

Homomorphisms

Group homomorphism
Let G and G’ be groups with operations + and
+’ respectively
h:G — G’is a group homomorphism iff
h(x+y)=h(x)+ h(y) Vx,ye G

GxG —

hx h

G

h

’

GxG—— ¢

Homomorphisms (cont.)

Automaton homomorphism

in the autonomous case:

M=(S8), M =(5'¥
{53, wr=ls3)

state set transition function
s> s
h(8(s))= 8 (h(s)) h\ h\
s .3

induces equivalence clagsgsin S




MDP Homomorphism
MDPs M =(S,4,%,P,R), M =(S", 4,V P R)

surjection /1:W¥ — W’ defined by A((s,a))=(f(s),g,(a)) where:
S-S5, g4, — A;»(S), for all s € S, are surjections such that
foralls,se S,andae 4, :

M) Pf(s)g.(a).f(3))= > Pls.a.t)
tels f
@ R(f(s)g,(@)=R(sa)

(s,a) —E&— P, (s,a) —&— 7

Vid

(s'sa)—E— P, )

Example

(A,E)S (B,N)
| (A, W)=(B,9)
M=(S,A¥,PR)  AN=BE)  )'=(s 4P PK)
(A.8)=(B,W)

WA, E)=h(B,N)=({4,B},F)

| State dependent action recoding |

Some Theoretical Results

[generalizing those of Dean and Givan, 1997]

Optimal Value equivalence:
It h(s,a)= (s,d) then O'(5,0)=0'(s',a).
Corollary:

If i(s,,a,) = h(s,,a,) then O(s,,a,)=0"(s,,a,).

Theorem: If M~ is a homomorphic image of M ,
then a policy optimal in M induces an optimal
policy inM .

Solve homomorphic image and /if the policy to
the original MDP.

Model Minimization

* Finding reduced models that preserve some aspects of
the original model

* Various modeling paradigms
— Finite State Automata (Hartmanis and Stearns * 66)
« Transition Behavior

— Model Checking (Emerson and Sistla " 96, Lee and Yannakakis
' 92)

« Correctness of system models

— Markov Chains (Kemeny and Snell * 60)
« Steady state distribution

— MDPs (Dean and Givan ’ 97, Ravindran and Barto ' 02)
« Optimal solutions

MDP Minimization

In general, NP-hard

— Polynomial time algorithm for computing

homomorphic image, under certain assumptions
« Extends Dean and Givan ' 97, Lee and Yannakakis ~ 92

State dependent action recoding
— Greater reduction in problem size
— Model symmetries

* Reflections, rotations, permutations
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Approximate Notions of Equivalence

» Complete and exact equivalence often do not
exist.

+ Approximate equivalence.

— “Equivalent” state-action pairs have nearly same
behavior.

Approximate Homomorphisms

» Use averages
* Relax homomorphism criteria:

- PU(9),@./() = XPean

— Compute ZP(S,a,t) for all (s, a)

€5,

1
=TT P(q.b,t)
‘[(s,a)]h‘ (4,17)6%;.”)];. els]y

P(f(9).8,(a)./(5))

— Similar computation for the reward function.

Example
] 1 ]
-.' o |f
=T D,Eg.‘
I : ] Approximate Image

Task is to reach red goal area.

Error Bound

» Approximate homomorphism between arbitrarily
different MDPs!

» Useful when loss in performance is acceptable.

* Bound the maximum difference in optimal value
function in M and the value of the lifted optimal
policy.

— Specializes Whitt * 78.

— Function of maximum difference in the probabilities
and rewards that are averaged.

Error bound (cont.)

* K- maximum difference between

P’(f(5).g,(a), f(5)) and Y P(s,a,0)

rels];

* K,— corresponding difference in reward
* A —the range of the reward function
» Y —the discount factor, 0<y<1

K
<2 |k + Y Al
max ] —ry -y 2

e

Bounded Parameter Approximation

* Model as a map onto a Bounded-parameter
MDP (Givan, Leach and Dean ’ 00)

— Transition probabilities and rewards given by
bounded intervals

— Upper and lower bounds on optimal values of
states

— Loose bounds




Example Revisited

Approximate Image o
Optimistic Case Pessimistic Case
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(discrete-time) semi-Markov
Decision Process

» SMDP, M, is the tuple: M=<S,A,‘P,P,R>

— §: set of states.

— A : set of actions.

— W Sx4 : set of admissible state-action pairs.

— P:¥xSxN—[Q1] : transition probabilities.

— R:¥xN >R :expected reward.
* Policy (stationary, stochastic): 7:¥ —[0,1]
* Maximize expected return.

* Generalize MDP homomorphism.

Hierarchical Reinforcement Learning

Options (Sutton, Precup, & Singh, 1999): A generalization of
actions to include temporally-extended courses of action

Anoptionisa triple 0 =<1,m,,>

o [ c Sis the set of states in which 0 may be started

e, . ¥ —[0,1] is the (stochastic) policy followed during 0
o3:S —[0,1] is the probability of terminating in each state

Example: robot docking

1 : all states in which charger is in sight
)[2][2] : pre-defined controller
[2] : terminate when docked or charger not visible

Sub-goal Options

» Task is to collect all

IR

i

=

H objects in the world

T

m

H w * 5 options — one for
] each room.

B by .

Markov, subgoal
. B “miwi2a49  Options
s

x=

«i-1.s * Implicitly define
option policy

* Employ option

specific abstraction

Relativized Options

reduced state actions

action percep

Relativized option:
0= <h’M0’1’B>
5 : Option homomorphism.
MO : Option SMDP. (Image of 1.)
[ c S : Initiation set.
B:S, —[0,1] : Termination criterion.




Rooms world task

z

-

Task is to collect all
objects in the world
5 options — one for
each room

Single relativized
option — get-object-
exit-room

« Partial homomorphism

Especially useful
when learning option
policy

— Speed up.

— Knowledge transfer.

Experimental Setup

* Regular Agent
— 5 options, one for each room

— Option reward of +1 on exiting room with
object

* Relativized Agent
— 1 relativized option, known homomorphism
— Same option reward
* Global reward of +1 on completing task
* Actions fail with probability 0.1

Learning Algorithm

 Hierarchical SMDP Q-learning (bietterich’ 00b)
— Q-learning at the lowest level (Watkins * 89)

— SMDP Q-learning at the higher levels (Bradtke and

Duff’ 95)

 Simultaneous learning at all levels

— Converges to recursively optimal policy
« Using results from Dietterich ' 00a

Results

Regular Options

Average Steps per Trial
g

Relativized Options

30 30 400 450 500

@ w0 w0 %0
Number of Trials

» Average over 100 runs

Asymmetric Testbed

=
o

N
m

Features:
rooms ={0,1,2,3,4,5}
x={0,...,9}
y={0,...,19}
binary: havel, i=1..,5

L
B

-

T3

Results — Asymmetric Testbed

Relativized Options

Reguiar

Reg

Average Steps per Trial

“Number of Trials™

Average Steps per Trial
s " 8

%
Relativized Options

o s 10 20 280 30 30 40 450 50

‘slilun?ber of Trials
« Still significant speed up in initial learning

» Asymptotic performance slightly worse




Outline of Talk

* Abstraction in decision making
— Algebraic framework

— Approximate equivalence

* Abstraction in hierarchical reinforcement learning

— Relativized options
— Algorithms for dynamic abstraction
-) « Choosing transformations

— Summary

Choosing Transformations
Motivation

» Relax prior knowledge requirement
— Unknown homomorphism
» Option SMDP and policy can be viewed as
a policy schema (schmidt " 75, Arbib * 95)
— Template of a policy
— Acquire schema in a prototypical setting

— Learn bindings of sensory inputs and actions to
schema

» Assume set of possible bindings available

Choosing Transformations
Problem Formulation

* Given:

- M,,1, IB of a relativized option

— H , afamily of transformations
* Identify the option homomorphism /A
* Formulate as a parameter estimation

problem

— One parameter, takes values from H

— Samples: <s1,a1,sz,a2,--->

— Bayesian learning

Choosing Transformations
Algorithm

« Assume uniform prior: Po(%,5)
* Experience: <sn ,a,,8,., >

P((s,a,,5,,)|1.5)=B,(f(s5,). g, (@), f(5,.)))

» Update Posteriors:

Py (£ (5,2, (@), £ (5,0)) Doy (15)

h,s)=
p,(:5) Normalizing Factor

Rooms world task

o e Train in room 1

. H * 8 candidate
transformations

3 — Reflections about x
e el and y axes and the

i

n
m

Features: x=y and x=-y lines

— Rotations by integer
multiples of 90
degrees

Results — Speed of convergence

2500
—— Known Transformations
= Choose Transformations

2000

1500

slip=0.7

1000+

slip=0.5

s00

Average Steps per Trial

slip=0.1

o 50 1o 1% 20 2 a0 850 400 4s0

Trial Number

* Not much of a difference since the task is too easy
« Correct transformation identified in 15 iterations




Choosing Transformations

Approximate Equivalence

* More complex domains

* Problem with Bayesian update
— Use prototypical room as option schema
— Susceptible to incorrect samples

» Use a heuristic lower bound

Example

T T T
I |
T
I [
H 1 | Features:
rooms ={0,1,2,3,4, 5}
x={0,..,9}

¥y=1{0,..,19}

E H binary: have,i=1,...,5
= ¥
i r w-E

s

Hl

i

P/ (s,),2, (@), /(5,.)) Doy (1,5

Choosing Transformations
Heuristic Update Rule

« Use a heuristic update rule:

w,(h,5) =

P(£(5,) 2, (@) f(5,)) W, (,5)

Normalizing Factor

where, P(s,a,s') = max(V,Po(s, a,s'))

and v isa small positive constant.

h,s)=
P, (.5 Normalizing Factor
Complex Game World
. @
B ol f o
I )
CH{ES
2 3 e
1 4 " * *
- m E =
o . . @ " O
.I . @ ‘ ‘m CI

» Gather all 4 diamonds in the world
+ 25x10% states
* 40 transformations
— 8 spatial transformations combined with 5 projections

Experimental Setup

» Regular agent
— 4 sub-goal options
* Relativized agent
— Uses option MDP shown earlier
— Chooses from 40 transformations
* Room 2 has no right transformation
* Hierarchical SMDP Q-learning

Results

Speed of Convergence

£

¢

Regular Options

'NEEN

¢

*®"Choose
1500 Transformations

Average Steps per Trial

* Learning the policy is more difficult than
learning the correct transformation!




Results

Transformation Weights in Room 4

09~ — transform 12
— transform 17
08, — transform 2
—— transform 7

Normalized Likelihood Measure

.
/)

] 100 500 600

Number of Updates

» Transformation 12 eventually converges to |

Results

Transformation Weights in Room 2

— transform 5

— transform 10
o6+ = transform 15
~— transform 35
—— transform 40

Normalized Likelihood Measure

.

o 160 180 200

s)r\‘llur;bel:mof andates
» Weights oscillate a lot

* Some transformation dominates eventually
— Changes from one run to another

Choosing Transformations

* Related work
— Multiple forward models (Haruno et al. 01, Doya et al. “02)
— Dynamic control models (Coelho and Grupen ' 98)
— Variably bound controllers (Huber and Grupen ' 99)

+ Representations can be designed to implicitly
perform transformations
— Formalizes such representations
— E.g. Deictic representations

Summary of Contributions

* Developed an abstraction framework for
MDPs

— Introduced MDP homomorphisms
« State dependent action recoding
— Theoretical results
* Approximate homomorphisms
— Bound maximum loss
— Upper and lower bound performance

Summary of Contributions
(cont.)

* Abstraction in hierarchical systems

— Relativized options
* An option defined in a relative frame of reference
* Uses partial homomorphisms
— Policy schema
* Policy template
— Bayesian algorithm for choosing the right
bindings
* Heuristic modification for approximate equivalence
» Complex game domain

Other Contributions

+ Exploiting structure and symmetry
— Structured morphisms
— Symmetry groups
« Reflections, rotations and permutations
— Polynomial time algorithm
* Hierarchical decomposition framework
— Based on SMDP homomorphisms
— Relation to safe state abstraction (Dietterich * 00a)
* Deictic option schema
— Representation based on pointers (Agre ’ 88)
— Modification of Bayesian algorithm




Future Work

Practical application of framework

— Humanoid experiments

Abstraction algorithms

— Symbolic representations (Feng etal.’ 02, 03)
Relation to partial observability
Relation to other abstract representations
— Probabilistic relational models (Getoor et al.’ 01
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