This article was published as a part of the Data Science Blogathon
An autoencoder is actually an Artificial Neural Network that is used to decompress and compress the input data provided in an unsupervised manner. Decompression and compression operations are lossy and data-specific.
Data specific means that the autoencoder will only be able to actually compress the data on which it has been trained. For example, if you train an autoencoder with images of dogs, then it will give a bad performance for cats. The autoencoder plans to learn the representation which is known as the encoding for a whole set of data. This can result in the reduction of the dimensionality by the training network. The reconstruction part is also learned with this.
Lossy operations mean that the reconstructed image is often not an as sharp or high resolution in quality as the original one and the difference is greater for reconstructions with a greater loss and this is known as a lossy operation. The following image shows how the image is encoded and decoded with a certain loss factor.
The Autoencoder is a particular type of feed-forward neural network and the input should be similar to the output. Hence we would need an encoding method, loss function, and a decoding method. The end goal is to perfectly replicate the input with minimum loss.
The Input will be passed through a layer of encoders which are actually a fully connected neural network that also makes the code decoder and hence use the same code for encoding and decoding like an ANN.
A Trained ANN through backpropagation works in the same way as the autoencoders. In this article we are going to discuss 3 types of autoencoders which are as follows :
Simple autoencoder
Deep CNN autoencoder
Denoising autoencoder
For the implementation part of the autoencoder, we will use the popular MNIST dataset of digits.
We begin by importing all the necessary libraries :
import all the dependencies from keras.layers import Dense,Conv2D,MaxPooling2D,UpSampling2D from keras import Input, Model from keras.datasets import mnist import numpy as np import matplotlib.pyplot as plt
Then we will build our model and we will provide the number of dimensions that will decide how much the input will be compressed. The lesser the dimension, the more will be the compression.
encoding_dim = 15 input_img = Input(shape=(784,)) # encoded representation of input encoded = Dense(encoding_dim, activation='relu')(input_img) # decoded representation of code decoded = Dense(784, activation='sigmoid')(encoded) # Model which take input image and shows decoded images autoencoder = Model(input_img, decoded)
Then we need to build the encoder model and decoder model separately so that we can easily differentiate between the input and output.
# This model shows encoded images encoder = Model(input_img, encoded) # Creating a decoder model encoded_input = Input(shape=(encoding_dim,)) # last layer of the autoencoder model decoder_layer = autoencoder.layers[-1] # decoder model decoder = Model(encoded_input, decoder_layer(encoded_input))
Then we need to compile the model with the ADAM optimizer and cross-entropy loss function fitment.
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
Then you need to load the data :
(x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) print(x_train.shape) print(x_test.shape)
Output :
(60000, 784) (10000, 784)
If you want to see how the data is actually, you can use the following line of code :
plt.imshow(x_train[0].reshape(28,28))
Output :
Then you need to train your model :
autoencoder.fit(x_train, x_train, epochs=15, batch_size=256, validation_data=(x_test, x_test))
Output :
Epoch 1/15 235/235 [==============================] - 14s 5ms/step - loss: 0.4200 - val_loss: 0.2263 Epoch 2/15 235/235 [==============================] - 1s 3ms/step - loss: 0.2129 - val_loss: 0.1830 Epoch 3/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1799 - val_loss: 0.1656 Epoch 4/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1632 - val_loss: 0.1537 Epoch 5/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1533 - val_loss: 0.1481 Epoch 6/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1488 - val_loss: 0.1447 Epoch 7/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1457 - val_loss: 0.1424 Epoch 8/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1434 - val_loss: 0.1405 Epoch 9/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1415 - val_loss: 0.1388 Epoch 10/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1398 - val_loss: 0.1374 Epoch 11/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1386 - val_loss: 0.1360 Epoch 12/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1373 - val_loss: 0.1350 Epoch 13/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1362 - val_loss: 0.1341 Epoch 14/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1355 - val_loss: 0.1334 Epoch 15/15 235/235 [==============================] - 1s 3ms/step - loss: 0.1348 - val_loss: 0.1328
After training, you need to provide the input and you can plot the results using the following code :
encoded_img = encoder.predict(x_test) decoded_img = decoder.predict(encoded_img) plt.figure(figsize=(20, 4)) for i in range(5): # Display original ax = plt.subplot(2, 5, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Display reconstruction ax = plt.subplot(2, 5, i + 1 + 5) plt.imshow(decoded_img[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()
You can clearly see the output for the encoded and decoded images respectively as shown below.
2. Deep CNN Autoencoder :
Since the input here is images, it does make more sense to use a Convolutional Neural network or CNN. The encoder will be made up of a stack of Conv2D and max-pooling layer and the decoder will have a stack of Conv2D and Upsampling Layer.
Code :
model = Sequential() # encoder network model.add(Conv2D(30, 3, activation= 'relu', padding='same', input_shape = (28,28,1))) model.add(MaxPooling2D(2, padding= 'same')) model.add(Conv2D(15, 3, activation= 'relu', padding='same')) model.add(MaxPooling2D(2, padding= 'same')) #decoder network model.add(Conv2D(15, 3, activation= 'relu', padding='same')) model.add(UpSampling2D(2)) model.add(Conv2D(30, 3, activation= 'relu', padding='same')) model.add(UpSampling2D(2)) model.add(Conv2D(1,3,activation='sigmoid', padding= 'same')) # output layer model.compile(optimizer= 'adam', loss = 'binary_crossentropy') model.summary()
Output :
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 28, 28, 30) 300 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 14, 14, 30) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 14, 14, 15) 4065 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 7, 7, 15) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 7, 7, 15) 2040 _________________________________________________________________ up_sampling2d (UpSampling2D) (None, 14, 14, 15) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 14, 14, 30) 4080 _________________________________________________________________ up_sampling2d_1 (UpSampling2 (None, 28, 28, 30) 0 _________________________________________________________________ conv2d_4 (Conv2D) (None, 28, 28, 1) 271 ================================================================= Total params: 10,756 Trainable params: 10,756 Non-trainable params: 0 _________________________________________________________________
Now you need to load the data and training the model
(x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) model.fit(x_train, x_train, epochs=15, batch_size=128, validation_data=(x_test, x_test))
Output :
Epoch 1/15 469/469 [==============================] - 34s 8ms/step - loss: 0.2310 - val_loss: 0.0818 Epoch 2/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0811 - val_loss: 0.0764 Epoch 3/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0764 - val_loss: 0.0739 Epoch 4/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0743 - val_loss: 0.0725 Epoch 5/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0729 - val_loss: 0.0718 Epoch 6/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0722 - val_loss: 0.0709 Epoch 7/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0715 - val_loss: 0.0703 Epoch 8/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0709 - val_loss: 0.0698 Epoch 9/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0700 - val_loss: 0.0693 Epoch 10/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0698 - val_loss: 0.0689 Epoch 11/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0694 - val_loss: 0.0687 Epoch 12/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0691 - val_loss: 0.0684 Epoch 13/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0688 - val_loss: 0.0680 Epoch 14/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0685 - val_loss: 0.0680 Epoch 15/15 469/469 [==============================] - 3s 7ms/step - loss: 0.0683 - val_loss: 0.0676
Now you need to provide the input and plot the output for the following results
pred = model.predict(x_test) plt.figure(figsize=(20, 4)) for i in range(5): # Display original ax = plt.subplot(2, 5, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Display reconstruction ax = plt.subplot(2, 5, i + 1 + 5) plt.imshow(pred[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()
Output :
Now we will see how the model performs with noise in the image. What we mean by noise is blurry images, changing the color of the images, or even white markers on the image.
noise_factor = 0.7 x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.) x_test_noisy = np.clip(x_test_noisy, 0., 1.) Here is how the noisy images look right now. plt.figure(figsize=(20, 2)) for i in range(1, 5 + 1): ax = plt.subplot(1, 5, i) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()
Output :
Now the images are barely identifiable and to increase the extent of the autoencoder, we will modify the layers of the defined model to increase the filter so that the model performs better and then fit the model.
model = Sequential() # encoder network model.add(Conv2D(35, 3, activation= 'relu', padding='same', input_shape = (28,28,1))) model.add(MaxPooling2D(2, padding= 'same')) model.add(Conv2D(25, 3, activation= 'relu', padding='same')) model.add(MaxPooling2D(2, padding= 'same')) #decoder network model.add(Conv2D(25, 3, activation= 'relu', padding='same')) model.add(UpSampling2D(2)) model.add(Conv2D(35, 3, activation= 'relu', padding='same')) model.add(UpSampling2D(2)) model.add(Conv2D(1,3,activation='sigmoid', padding= 'same')) # output layer model.compile(optimizer= 'adam', loss = 'binary_crossentropy') model.fit(x_train_noisy, x_train, epochs=15, batch_size=128, validation_data=(x_test_noisy, x_test))
Output :
Epoch 1/15 469/469 [==============================] - 5s 9ms/step - loss: 0.2643 - val_loss: 0.1456 Epoch 2/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1440 - val_loss: 0.1378 Epoch 3/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1373 - val_loss: 0.1329 Epoch 4/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1336 - val_loss: 0.1305 Epoch 5/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1313 - val_loss: 0.1283 Epoch 6/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1294 - val_loss: 0.1268 Epoch 7/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1278 - val_loss: 0.1257 Epoch 8/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1267 - val_loss: 0.1251 Epoch 9/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1259 - val_loss: 0.1244 Epoch 10/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1251 - val_loss: 0.1234 Epoch 11/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1241 - val_loss: 0.1234 Epoch 12/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1239 - val_loss: 0.1222 Epoch 13/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1232 - val_loss: 0.1223 Epoch 14/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1226 - val_loss: 0.1215 Epoch 15/15 469/469 [==============================] - 4s 8ms/step - loss: 0.1221 - val_loss: 0.1211
After the training, we will provide the input and write a plot function to see the final results.
pred = model.predict(x_test_noisy) plt.figure(figsize=(20, 4)) for i in range(5): # Display original ax = plt.subplot(2, 5, i + 1) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Display reconstruction ax = plt.subplot(2, 5, i + 1 + 5) plt.imshow(pred[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()
Output :
Endnotes :
We have gone through the structure of how autoencoders work and worked with 3 types of autoencoders. There are multiple uses for autoencoders like dimensionality reduction image compression, recommendations system for movies and songs and more. The performance of the model can be increased by training it for more epochs or also by increasing the dimension of our network.
Thank you for reading till the end. Hope you are doing well and stay safe and are getting vaccinated soon or already are.
Data Engineer | Python, C/C++, AWS Developer | Freelance Tech Writer
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
Thank you concept is well explained.
very nice..
Well explained