[su_tabs]
[su_tab title = “Description”]
In this online course, “Cluster Analysis”, you will learn how to use various cluster analysis methods to identify possible clusters in multivariate data. In marketing applications, clusters of customer records are called market segments (and the process is called market segmentation). Methods discussed include:
- hierarchical clustering (in which smaller clusters are nested inside larger clusters);
- k-means clustering;
- two-step clustering;
- normal mixture models for continuous variables.
[/su_tab]
[su_tab title = “Program structure”]
After taking this course, a student will be able to:
- Conduct hierarchical cluster analysis and k-means clustering to identify clusters in multivariate dataÂ
- Apply normalization of data appropriately in cluster analysis
- Identify the assignment of cases to clusters
- Apply mixture models to multivariate data and interpret the output
- Interpret/diagnose the output of different clustering procedures
Course Program:
- Week 1: Hierarchical Clustering
- Week 2: K-means Clustering
- Week 3: Normal Mixture Model
- Week 4: Other Approaches
Important Date:
Contact Institute
Duration:
4 Weeks
Time Requirement:
About 15 hours per week, at time of your choosing.
Fees:
INR 37,740 (assuming $ = INR 60)
Part Time/ Full Time:
Part time
[/su_tab]
[su_tab title = “Eligibility”]
- Marketing analysts who need to cluster customer data as part of a market segmentation strategy;
- Computational biologists (e.g. for taxonomy);
- Environmental scientists (e.g. for habitat studies);
- IT specialists (e.g. in modeling web traffic patterns);
- Military and national security analysts (e.g. in automated analysis of intercepted communications).
Pre-requisite:
Some familiarity with multivariate data is helpful.
[/su_tab]
[su_tab title = “Tools”]
- Statistics
[/su_tab]
[su_tab title = “Faculty”]
- Mr. Anthony Babinec
[/su_tab]
[su_tab title = “Contact”]
[/su_tab]
[/su_tabs]