Learn everything about Analytics

Principal Components and Factor Analysis – Statistics.Com

0-6 Month Online
Intermediate 22-May-2015
Online Business Analytics
Online Self Paced 5108


[su_tab title = “Description”]

Exploratory factor analysis (EFA) is a method of identifying the number and nature of latent variables that explain the variation and covariation in a set of measured variables.You will learn how to make decisions in building an EFA model – including what model to use, the number of factors to retain, and the rotation method to use. Because of similarities in the underlying mathematics, factor analysis routines often offer principal components analysis (PCA) as a method of “factoring”, yet EFA and PCA have different models and serve different goals.


[su_tab title = “Program Structure”]

This course covers the theory of EFA and PCA, and features practical work with computer software and data examples. At the conclusion of the course students will understand the differences between EFA and PCA and will be able to specify different forms of factor extraction and rotation.

Course Program:

  • Week 1: Methods
  • Week 2: Choosing the Correct Number of Factors
  • Week 3: Rotation
  • Week 4: Use of Factor Scores

Important Date:

May 22, 2015 to June 19, 2015


4 Weeks

Time Requirement:

About 15 hours per week, at times of  your choosing.


INR 37,740 (assuming $ = INR 60)

Part Time/Full Time:

Part Time


[su_tab title = “Eligibility”]

Market researchers, educational and psychological researchers, sociologists, political scientists, survey researchers.


  • Some prior work with modeling is helpful.


[su_tab title =”Tools”]

  • SPSS


[su_tab title = “Faculty”]

  • Anthony Babinec


[su_tab title = “Contact”]

Name :
Email :
Contact Number :
Message :
Code :



This article is quite old and you might not get a prompt response from the author. We request you to post this comment on Analytics Vidhya's Discussion portal to get your queries resolved