Hack Session: Federated Learning using Deep Learning

Nov 13, 2019


Auditorium 3

60 minutes

Machine Learning

Federated learning is a family of Machine Learning algorithms that has the core idea: a connected network exists in which there is a central server node. Each of the nodes creates data – that has to be used for training as well as for prediction. Each of the nodes trains a local model and only that model is shared with the server, not the data.
In this talk, We talk about how to build deep learning models using federated learning that is truly privacy-preserving. We will show how to build custom algorithms and loss functions.
Key Takeaways:
  •     Introduction to Federated Learning
    • Decentralized Training
    • Encryption
    • Differential Privacy
  •     Federated Learning – Notebook
    •  Introduction
    •  Custom algorithm and loss function
  • Tuhin Sharma


    Binaize Labs

  • Bargava Subramanian

    Co-Founder and Deep Learning Engineer

    Binaize Labs

Copyright 2019 Analytics Vidhya. All rights reserved