Underfitting and overfitting are two common challenges faced in machine learning. Underfitting happens when a model is not good enough to understand all the details in the data. It’s like the model is too simple and misses important stuff.. This leads to poor performance on both the training and test sets. Overfitting, on the other hand, occurs when a model is too complex and memorizes the training data too well. This leads to good performance on the training set but poor performance on the test set.

In this blog post, we will discuss the reasons for underfitting and overfitting.

Overfitting happens when a machine learning model becomes overly intricate, essentially memorizing the training data. While this might lead to high accuracy on the training set, the model may struggle with new, unseen data due to its excessive focus on specific details.

- Too few features miss important details.
- Using a simple model for a complex problem.
- Excessive regularization limits model flexibility.

Underfitting occurs when a model is too simplistic to grasp the underlying patterns in the data. It lacks the complexity needed to adequately represent the relationships present, resulting in poor performance on both the training and new data.

- Too many features confuse the model.
- Using a complex model for a simple problem.
- Not enough regularization.

You’ll inevitably face this question in a data scientist interview:

Can you explain what is underfitting and overfitting in the context of machine learning? Describe it in a way even a non-technical person will grasp.

Your ability to explain this in a non-technical and easy-to-understand manner might well decide your fit for the data science role!

Even when we’re working on a machine learning project, we often face situations where we are encountering unexpected performance or error rate differences between the training set and the test set (as shown below). How can a model perform so well over the training set and just as poorly on the test set?

This happens very frequently whenever I am working with tree-based predictive models. Because of the way the algorithms work, you can imagine how tricky it is to avoid falling into the overfitting trap!

Moreover, it can be quite daunting when we are unable to find the underlying reason why our predictive model is exhibiting this anomalous behavior.

Here’s my personal experience – ask any seasoned data scientist about this, they typically start talking about some array of fancy terms like Overfitting, Underfitting, Bias, and Variance. But little does anyone talk about the intuition behind these machine learning concepts. Let’s rectify that, shall we?

I want to explain these concepts using a real-world example. A lot of folks talk about the theoretical angle but I feel that’s not enough – we need to visualize how underfitting and overfitting actually work.

So, let’s go back to our college days for this.

Consider a math class consisting of 3 students and a professor.

Now, in any classroom, we can broadly divide the students into 3 categories. We’ll talk about them one-by-one.

Let’s say that student A resembles a student who does not like math. She is not interested in what is being taught in the class and therefore does not pay much attention to the professor and the content he is teaching.

Let’s consider student B. He is the most competitive student who focuses on memorizing each and every question being taught in class instead of focusing on the key concepts. Basically, he isn’t interested in learning the problem-solving approach.

Finally, we have the ideal student C. She is purely interested in learning the key concepts and the problem-solving approach in the math class rather than just memorizing the solutions presented.

We all know from experience what happens in a classroom. The professor first delivers lectures and teaches the students about the problems and how to solve them. At the end of the day, the professor simply takes a quiz based on what he taught in the class.

The obstacle comes in the semester3 tests that the school lays down. This is where new questions (unseen data) comes up. The students haven’t seen these questions before and certainly haven’t solved them in the classroom. Sounds familiar?

So, letâ€™s discuss what happens when the teacher takes a classroom test at the end of the day:

- Student A, who was distracted in his own world, simply guessed the answers and got approximately 50% marks in the test
- On the other hand, the student who memorized each and every question taught in the classroom was able to answer almost every question by memory and therefore obtained 98% marks in the class test
- For student C, she actually solved all the questions using the problem-solving approach she learned in the classroom and scored 92%

We can clearly infer that the student who simply memorizes everything is scoring better without much difficulty.

Now here’s the twist. Letâ€™s also look at what happens during the monthly test, when students have to face new unknown questions which are not taught in the class by the teacher.

- In the case of student A, things did not change much and he still randomly answers questions correctly ~50% of the time.
- In the case of Student B, his score dropped significantly. Can you guess why? This is because he always memorized the problems that were taught in the class but this monthly test contained questions which he has never seen before. Therefore, his performance went down significantly
- In the case of Student C, the score remained more or less the same. This is because she focused on learning the problem-solving approach and therefore was able to apply the concepts she learned to solve the unknown questions

You might be wondering how this example relates to the problem which we encountered during the train and test scores of the decision tree classifier? Good question!

So, letâ€™s work on connecting this example with the results of the decision tree classifier that I showed you earlier.

First, the classwork and class test resemble the training data and the prediction over the training data itself respectively. On the other hand, the semester test represents the test set from our data which we keep aside before we train our model (or unseen data in a real-world machine learning project).

Now, recall our decision tree classifier I mentioned earlier. It gave a perfect score over the training set but struggled with the test set. Comparing that to the student examples we just discussed, the classifier establishes an analogy with student B who tried to memorize each and every question in the training set.

Similarly, our decision tree classifier tries to learn each and every point from the training data but suffers radically when it encounters a new data point in the test set. It is not able to generalize it well.

This situation where any given model is performing too well on the training data but the performance drops significantly over the test set is called an overfitting model.

For example, non-parametric models like decision trees, KNN, and other tree-based algorithms are very prone to overfitting. These models can learn very complex relations which can result in overfitting. The graph below summarises this concept:

On the other hand, if the model is performing poorly over the test and the train set, then we call that an underfitting model. An example of this situation would be building a linear regression model over non-linear data.

I hope this short intuition has cleared up any doubts you might have had with underfitting, overfitting, and best-fitting models and how they work or behave under the hood.

Feel free to shoot me any questions or thoughts below.

High variance indicates overfitting, while low variance indicates underfitting.

No, overfitting increases variance by memorizing the training data, making the model less generalizable to new data.

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

Become a full stack data scientist##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

Understanding Cost Function
Understanding Gradient Descent
Math Behind Gradient Descent
Assumptions of Linear Regression
Implement Linear Regression from Scratch
Train Linear Regression in Python
Implementing Linear Regression in R
Diagnosing Residual Plots in Linear Regression Models
Generalized Linear Models
Introduction to Logistic Regression
Odds Ratio
Implementing Logistic Regression from Scratch
Introduction to Scikit-learn in Python
Train Logistic Regression in python
Multiclass using Logistic Regression
How to use Multinomial and Ordinal Logistic Regression in R ?
Challenges with Linear Regression
Introduction to Regularisation
Implementing Regularisation
Ridge Regression
Lasso Regression

Introduction to Stacking
Implementing Stacking
Variants of Stacking
Implementing Variants of Stacking
Introduction to Blending
Bootstrap Sampling
Introduction to Random Sampling
Hyper-parameters of Random Forest
Implementing Random Forest
Out-of-Bag (OOB) Score in the Random Forest
IPL Team Win Prediction Project Using Machine Learning
Introduction to Boosting
Gradient Boosting Algorithm
Math behind GBM
Implementing GBM in python
Regularized Greedy Forests
Extreme Gradient Boosting
Implementing XGBM in python
Tuning Hyperparameters of XGBoost in Python
Implement XGBM in R/H2O
Adaptive Boosting
Implementing Adaptive Boosing
LightGBM
Implementing LightGBM in Python
Catboost
Implementing Catboost in Python

Introduction to Clustering
Applications of Clustering
Evaluation Metrics for Clustering
Understanding K-Means
Implementation of K-Means in Python
Implementation of K-Means in R
Choosing Right Value for K
Profiling Market Segments using K-Means Clustering
Hierarchical Clustering
Implementation of Hierarchial Clustering
DBSCAN
Defining Similarity between clusters
Build Better and Accurate Clusters with Gaussian Mixture Models

Introduction to Machine Learning Interpretability
Framework and Interpretable Models
model Agnostic Methods for Interpretability
Implementing Interpretable Model
Understanding SHAP
Out-of-Core ML
Introduction to Interpretable Machine Learning Models
Model Agnostic Methods for Interpretability
Game Theory & Shapley Values

Deploying Machine Learning Model using Streamlit
Deploying ML Models in Docker
Deploy Using Streamlit
Deploy on Heroku
Deploy Using Netlify
Introduction to Amazon Sagemaker
Setting up Amazon SageMaker
Using SageMaker Endpoint to Generate Inference
Deploy on Microsoft Azure Cloud
Introduction to Flask for Model
Deploying ML model using Flask

I like the way its explained. Well Understood. Kudos to Writer

Great explanation, thanks! I believe u have a minor mistake in the third quote - it should be "... if the model is performing poorly...".

thank you for pointing that out, corrected!

Great article. I have a doubt. How can we know weather the model is overfit or underfit? I mean while applying algorithms, what are those constraints considered to classify a model?

As I covered in the article, the underfitting and overfitting can be identified using a test set or a validation set from the data. We first train the model on training set and and record the performance. Next we also generate predictions over the test set and look over the performance. If Test <<< Train ~ Overfitting If Test~Train and both scores are significantly high in magnitude ~ Good Fit if Test~Train and both scores are below par - Underfit

Simply Superb Analogy Sharoon. Expecting more such articles from you. Keep it up.

Kudos to the explanation

Very well written

Good one. Well Explained.

Good & intuitive way to explain over-fitting and under-fitting.I however didn't like the use of He/ his for student 'A' who has been shown as a girl. I know this doesn't matter for the purpose of the article but still it will be nice if this issue can be fixed.

Very Nice Explanation. It explained the concept in very simple terms

Nicely explained Thanks