This article was published as a part of the Data Science Blogathon.
Data visualization in python is perhaps one of the most utilized features for data science with python in today’s day and age. The libraries in python come with lots of different features that enable users to make highly customized, elegant, and interactive plots.
In this article, we will cover the usage of Matplotlib, Seaborn as well as an introduction to other alternative packages that can be used in python visualization.
Within Matplotlib and Seaborn, we will be covering a few of the most commonly used plots in the data science world for easy visualization.
Later in the article, we go over go another powerful feature in python visualizations, the subplot, and cover a basic walkthrough for creating subplots.
Matplotlib is a visualization library in Python for 2D plots of arrays. Matplotlib is written in Python and makes use of the NumPy library. It can be used in Python and IPython shells, Jupyter notebook, and web application servers. Matplotlib comes with a wide variety of plots like line, bar, scatter, histogram, etc. which can help us, deep-dive, into understanding trends, patterns, correlations. It was introduced by John Hunter in 2002.
Seaborn is a dataset-oriented library for making statistical representations in Python. It is developed atop matplotlib and to create different visualizations. It is integrated with pandas data structures. The library internally performs the required mapping and aggregation to create informative visuals It is recommended to use a Jupyter/IPython interface in matplotlib mode.
Bokeh is an interactive visualization library for modern web browsers. It is suitable for large or streaming data assets and can be used to develop interactive plots and dashboards. There is a wide array of intuitive graphs in the library which can be leveraged to develop solutions. It works closely with PyData tools. The library is well-suited for creating customized visuals according to required use-cases. The visuals can also be made interactive to serve a what-if scenario model. All the codes are open source and available on GitHub.
Altair is a declarative statistical visualization library for Python. Altair’s API is user-friendly and consistent and built atop Vega-Lite JSON specification. Declarative library indicates that while creating any visuals, we need to define the links between the data columns to the channels (x-axis, y-axis, size, color). With the help of Altair, it is possible to create informative visuals with minimal code. Altair holds a declarative grammar of both visualization and interaction.
plotly.py is an interactive, open-source, high-level, declarative, and browser-based visualization library for Python. It holds an array of useful visualization which includes scientific charts, 3D graphs, statistical charts, financial charts among others. Plotly graphs can be viewed in Jupyter notebooks, standalone HTML files, or hosted online. Plotly library provides options for interaction and editing. The robust API works perfectly in both local and web browser mode.
ggplot is a Python implementation of the grammar of graphics. The Grammar of Graphics refers to the mapping of data to aesthetic attributes (colour, shape, size) and geometric objects (points, lines, bars). The basic building blocks according to the grammar of graphics are data, geom (geometric objects), stats (statistical transformations), scale, coordinate system, and facet.
Using ggplot in Python allows you to develop informative visualizations incrementally, understanding the nuances of the data first, and then tuning the components to improve the visual representations.
To extract the required information from the different visuals we create, it is quintessential that we use the correct representation based on the type of data and the questions that we are trying to understand. We will go through a set of most widely used representations below and how we can use them in the most effective manner.
A bar chart is used when we want to compare metric values across different subgroups of the data. If we have a greater number of groups, a bar chart is preferred over a column chart.
Bar chart using Matplotlib
#Creating bar plot sns.barplot(x = 'fare',y = 'who',data = titanic_dataset,palette = "Blues") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
Column charts are mostly used when we need to compare a single category of data between individual sub-items, for example, when comparing revenue between regions
#Creating the dataset df = sns.load_dataset('titanic') df=df.groupby('who')['fare'].sum().to_frame().reset_index() #Creating the column plot plt.bar(df['who'],df['fare'],color = ['#F0F8FF','#E6E6FA','#B0E0E6']) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Reading the dataset titanic_dataset = sns.load_dataset('titanic') #Creating column chart sns.barplot(x = 'who',y = 'fare',data = titanic_dataset,palette = "Blues") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A grouped bar chart is used when we want to compare the values in certain groups and sub-groups
#Creating the dataset df = sns.load_dataset('titanic') df_pivot = pd.pivot_table(df, values="fare",index="who",columns="class", aggfunc=np.mean) #Creating a grouped bar chart ax = df_pivot.plot(kind="bar",alpha=0.5) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
#Reading the dataset titanic_dataset = sns.load_dataset('titanic') #Creating the bar plot grouped across classes sns.barplot(x = 'who',y = 'fare',hue = 'class',data = titanic_dataset, palette = "Blues") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A stacked bar chart is used when we want to compare the total sizes across the available groups and the composition of the different sub-groups
# Stacked bar chart #Creating the dataset df = pd.DataFrame(columns=["A","B", "C","D"], data=[["E",0,1,1], ["F",1,1,0], ["G",0,1,0]]) df.plot.bar(x='A', y=["B", "C","D"], stacked=True, width = 0.4,alpha=0.5) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
dataframe = pd.DataFrame(columns=["A","B", "C","D"], data=[["E",0,1,1], ["F",1,1,0], ["G",0,1,0]]) dataframe.set_index('A').T.plot(kind='bar', stacked=True) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A line chart is used for the representation of continuous data points. This visual can be effectively utilized when we want to understand the trend across time.
#Creating the dataset df = sns.load_dataset("iris") df=df.groupby('sepal_length')['sepal_width'].sum().to_frame().reset_index() #Creating the line chart plt.plot(df['sepal_length'], df['sepal_width']) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Creating the dataset cars = ['AUDI', 'BMW', 'NISSAN', 'TESLA', 'HYUNDAI', 'HONDA'] data = [20, 15, 15, 14, 16, 20] #Creating the pie chart plt.pie(data, labels = cars,colors = ['#F0F8FF','#E6E6FA','#B0E0E6','#7B68EE','#483D8B']) #Adding the aesthetics plt.title('Chart title') #Show the plot plt.show()
Pie charts can be used to identify proportions of the different components in a given whole.
#Creating the dataset cars = ['AUDI', 'BMW', 'NISSAN', 'TESLA', 'HYUNDAI', 'HONDA'] data = [20, 15, 15, 14, 16, 20] #Creating the pie chart plt.pie(data, labels = cars,colors = ['#F0F8FF','#E6E6FA','#B0E0E6','#7B68EE','#483D8B']) #Adding the aesthetics plt.title('Chart title') #Show the plot plt.show()
Area charts are used to track changes over time for one or more groups. Area graphs are preferred over line charts when we want to capture the changes over time for more than 1 group.
#Reading the dataset x=range(1,6) y=[ [1,4,6,8,9], [2,2,7,10,12], [2,8,5,10,6] ] #Creating the area chart ax = plt.gca() ax.stackplot(x, y, labels=['A','B','C'],alpha=0.5) #Adding the aesthetics plt.legend(loc='upper left') plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
# Data years_of_experience =[1,2,3] salary=[ [6,8,10], [4,5,9], [3,5,7] ] # Plot plt.stackplot(years_of_experience,salary, labels=['Company A','Company B','Company C']) plt.legend(loc='upper left') #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
Column histograms are used to observe the distribution for a single variable with few data points.
#Creating the dataset penguins = sns.load_dataset("penguins") #Creating the column histogram ax = plt.gca() ax.hist(penguins['flipper_length_mm'], color='blue',alpha=0.5, bins=10) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Reading the dataset penguins_dataframe = sns.load_dataset("penguins") #Plotting bar histogram sns.distplot(penguins_dataframe['flipper_length_mm'], kde=False, color='blue', bins=10) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
Line histograms are used to observe the distribution for a single variable with many data points.
#Creating the dataset df_1 = np.random.normal(0, 1, (1000, )) density = stats.gaussian_kde(df_1) #Creating the line histogram n, x, _ = plt.hist(df_1, bins=np.linspace(-3, 3, 50), histtype=u'step', density=True) plt.plot(x, density(x)) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Reading the dataset penguins_dataframe = sns.load_dataset("penguins") #Plotting line histogram sns.distplot(penguins_dataframe['flipper_length_mm'], hist = False, kde = True, label='Africa') #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
Scatter plots can be leveraged to identify relationships between two variables. It can be effectively used in circumstances where the dependent variable can have multiple values for the independent variable.
#Creating the dataset df = sns.load_dataset("tips") #Creating the scatter plot plt.scatter(df['total_bill'],df['tip'],alpha=0.5 ) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Reading the dataset bill_dataframe = sns.load_dataset("tips") #Creating scatter plot sns.scatterplot(data=bill_dataframe, x="total_bill", y="tip") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
Scatter plots can be leveraged to depict and show relationships among three variables.
#Creating the dataset np.random.seed(42) N = 100 x = np.random.normal(170, 20, N) y = x + np.random.normal(5, 25, N) colors = np.random.rand(N) area = (25 * np.random.rand(N))**2 df = pd.DataFrame({ 'X': x, 'Y': y, 'Colors': colors, "bubble_size":area}) #Creating the bubble chart plt.scatter('X', 'Y', s='bubble_size',alpha=0.5, data=df) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
#Reading the dataset bill_dataframe = sns.load_dataset("tips") #Creating bubble plot sns.scatterplot(data=bill_dataframe, x="total_bill", y="tip", hue="size", size="size") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A box plot is used to show the shape of the distribution, its central value, and its variability.
from past.builtins import xrange #Creating the dataset df_1 = [[1,2,5], [5,7,2,2,5], [7,2,5]] df_2 = [[6,4,2], [1,2,5,3,2], [2,3,5,1]] #Creating the box plot ticks = ['A', 'B', 'C'] plt.figure() bpl = plt.boxplot(df_1, positions=np.array(xrange(len(df_1)))*2.0-0.4, sym='', widths=0.6) bpr = plt.boxplot(df_2, positions=np.array(xrange(len(df_2)))*2.0+0.4, sym='', widths=0.6) plt.plot([], c='#D7191C', label='Label 1') plt.plot([], c='#2C7BB6', label='Label 2') #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') plt.legend() plt.xticks(xrange(0, len(ticks) * 2, 2), ticks) plt.xlim(-2, len(ticks)*2) plt.ylim(0, 8) plt.tight_layout() #Show the plot plt.show()
#Reading the dataset bill_dataframe = sns.load_dataset("tips") #Creating boxplots ax = sns.boxplot(x="day", y="total_bill", hue="smoker", data=bill_dataframe, palette="Set3") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A waterfall chart can be used to explain the gradual transition in value of a variable that is subjected to increments or decrements
#Reading the dataset test = pd.Series(-1 + 2 * np.random.rand(10), index=list('abcdefghij')) #Function for makig a waterfall chart def waterfall(series): df = pd.DataFrame({'pos':np.maximum(series,0),'neg':np.minimum(series,0)}) blank = series.cumsum().shift(1).fillna(0) df.plot(kind='bar', stacked=True, bottom=blank, color=['r','b'], alpha=0.5) step = blank.reset_index(drop=True).repeat(3).shift(-1) step[1::3] = np.nan plt.plot(step.index, step.values,'k') #Creating the waterfall chart waterfall(test) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') #Show the plot plt.show()
Venn diagrams are used to see the relationships between two or three sets of items. It highlights the similarities and differences
from matplotlib_venn import venn3 #Making venn diagram venn3(subsets = (10, 8, 22, 6,9,4,2)) plt.show()
Tree Maps are primarily used to display data that is grouped and nested in a hierarchical structure and observe the contribution of each component
import squarify sizes = [40, 30, 5, 25, 10] squarify.plot(sizes) #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') # Show the plot plt.show()
A 100% stacked bar chart can be leveraged when we want to show the relative differences within each group for the different sub-groups available
#Reading the dataset r = [0,1,2,3,4] raw_data = {'greenBars': [20, 1.5, 7, 10, 5], 'orangeBars': [5, 15, 5, 10, 15],'blueBars': [2, 15, 18, 5, 10]} df = pd.DataFrame(raw_data) # From raw value to percentage totals = [i+j+k for i,j,k in zip(df['greenBars'], df['orangeBars'], df['blueBars'])] greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)] orangeBars = [i / j * 100 for i,j in zip(df['orangeBars'], totals)] blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)] # plot barWidth = 0.85 names = ('A','B','C','D','E') # Create green Bars plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth) # Create orange Bars plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth) # Custom x axis plt.xticks(r, names) plt.xlabel("group") #Adding the aesthetics plt.title('Chart title') plt.xlabel('X axis title') plt.ylabel('Y axis title') plt.show()
Marginal plots are used to assess the relationship between two variables and examine their distributions. Such plots scatter plots that have histograms, box plots, or dot plots in the margins of respective x and y axes
#Reading the dataset iris_dataframe = sns.load_dataset('iris') #Creating marginal graphs sns.jointplot(x=iris_dataframe["sepal_length"], y=iris_dataframe["sepal_width"], kind='scatter') # Show the plot plt.show()
Subplots are powerful visualizations that help easy comparisons between plots
#Creating the dataset df = sns.load_dataset("iris") df=df.groupby('sepal_length')['sepal_width'].sum().to_frame().reset_index() #Creating the subplot fig, axes = plt.subplots(nrows=2, ncols=2) ax=df.plot('sepal_length', 'sepal_width',ax=axes[0,0]) ax.get_legend().remove() #Adding the aesthetics ax.set_title('Chart title') ax.set_xlabel('X axis title') ax.set_ylabel('Y axis title') ax=df.plot('sepal_length', 'sepal_width',ax=axes[0,1]) ax.get_legend().remove() ax=df.plot('sepal_length', 'sepal_width',ax=axes[1,0]) ax.get_legend().remove() ax=df.plot('sepal_length', 'sepal_width',ax=axes[1,1]) ax.get_legend().remove() #Show the plot plt.show()
In conclusion, there is an array of different libraries which can be leveraged to their full potential by understanding the use-case and the requirement. The syntax and the semantics vary from package to package and it is essential to understand the challenges and advantages of the different libraries. Happy visualizing!
Data scientist and analytics enthusiast
The media shown in this article are not owned by Analytics Vidhya and is used at the Author’s discretion.
Lorem ipsum dolor sit amet, consectetur adipiscing elit,