In this beginner’s tutorial on data science, we will discuss about determining the **optimal number of clusters** in a data set, which is a fundamental issue in partitioning clustering, such as k-means clustering. K-means clustering is an unsupervised learning machine learning algorithm. In an unsupervised algorithm, we are not interested in making predictions (since we don’t have a target/output variable). The objective is to discover interesting patterns in the data, e.g., are there any subgroups or ‘clusters’ among the bank’s customers?

Clustering techniques use raw data to form clusters based on common factors among various data points. Customer segmentation for targeted marketing is one of the most vital applications of the clustering algorithm.Also, in this Article You will get to know Silhouette Score kmeans.

**Learning Objectives**

- In this tutorial, we will learn about K-means clustering, which is an unsupervised machine learning model, and its implementation in python.
- K-means is mostly used in customer insight, marketing, medical, and social media.

*This article was published as a part of the Data Science Blogathon.*

**Customer Insight**

Let a retail chain with so many stores across locations wants to manage stores at best and increase the sales and performance. Cluster analysis can help the retail chain get desired insights on customer demographics, purchase behavior, and demand patterns across locations.

This will help the retail chain with assortment planning, planning promotional activities, and store benchmarking for better performance and higher returns.

**Marketing**

Cluster Analysis can be helpful in the field of marketing. Cluster Analysis can help in market segmentation and positioning and identify test markets for new product development.

As a manager of the online store, you would want to group the customers into different clusters so that you can make a customized marketing campaign for each group. You do not have any label in mind, such as ‘good customer’ or ‘bad customer.’ You want to just look at patterns in customer data and try to find segments. This is where clustering techniques can help.

**Social Media**

In the areas of social networking and social media, Cluster Analysis is used to identify similar communities within larger groups.

**Medical**

Cluster Analysis has also been widely used in the field of biology and medical science, like sequencing into gene families, human genetic clustering, building groups of genes, clustering of organisms at species, and so on.

Certain factors can impact the efficacy of the final clusters formed when using k-means clustering. So, we must keep in mind the following factors when finding the optimal value of k. Solving business problems using the K-means clustering algorithm.

**Number of clusters (K):**The number of clusters you want to group your data points into, has to be predefined.**Initial Values/ Seeds:**The choice of the initial cluster centers can have an impact on the final cluster formation. The K-means algorithm is non-deterministic. This means that the outcome of clustering can be different each time the algorithm is run, even on the same data set.**Outliers:**Cluster formation is very sensitive to the presence of outliers. Outliers pull the cluster towards itself, thus affecting optimal cluster formation.**Distance Measures:**Using different distance measures (used to calculate the distance between a data point and cluster center) might yield different clusters.- The K-Means algorithm does not work with categorical data.
- The process may not converge in the given number of iterations. You should always check for convergence.

3 steps procedure to understand the working of K-means clustering

**Picking Center:**It randomly picks one simple point as cluster center starting (

**centroids**).**Finding Cluster Inertia:**The algorithm then will continuously/repeatedly move the centroids to the centers of the samples. This iterative approach minimizes the within-cluster

*sum of squared errors*(*SSE*), which is often called**cluster inertia**.**Repeat Step 2:**We will continue step 2 until it reaches the maximum number of iterations.

Whenever the centroids move, it will compute the ** squared Euclidean distance** to measure the similarity between the samples and centroids. Hence, it works very well in identifying clusters with a spherical shape.

The silhouette score is a metric used to evaluate the quality of clustering performed by K-means. It essentially measures how well data points are grouped within their assigned clusters compared to data points in other clusters.

Here’s a breakdown of the silhouette score for K-means:

**Calculation:**

The silhouette score is calculated for each data point and then averaged across all data points. It considers two distances for each data point:

**a:**Average distance between the data point and all other data points within the same cluster (intra-cluster distance).**b:**Distance between the data point and the nearest cluster that the data point doesn’t belong to (inter-cluster distance).

The silhouette score for a data point is then calculated as:

(b – a) / max(a, b)

Interpretation:

The silhouette score ranges from -1 to 1:

1: Ideally close data points within a cluster and far away from other clusters (good clustering).

0: Data points are on the border between clusters, indicating some overlap (average clustering).

-1: Data points might be assigned to the wrong cluster (poor clustering).

Using Silhouette Score:

The silhouette score is particularly helpful in determining the optimal number of clusters (k) for K-means. You can calculate the silhouette score for different values of k and choose the k that results in the highest average silhouette score. This indicates a clustering where data points are well-separated within their clusters.

Here are some additional points to consider:

Silhouette analysis can be visualized using a silhouette plot, which helps identify clusters with low silhouette scores.

Silhouette score is just one metric for evaluating K-means clustering. Other factors like domain knowledge and the purpose of clustering should also be considered.

There are libraries like scikit-learn in Python that provide functions to calculate silhouette score for K-means clustering.

In this blog, we will discuss the most important parameter, i.e., ** the ways by which we can select an optimal number of clusters (K)**. There are two main methods to find the best value of K. We will discuss them individually.

Recall that the basic idea behind partitioning methods, such as k-means clustering, is to define clusters such that the total intra-cluster variation [or total within-cluster sum of square (WSS)] is minimized. The total wss measures the compactness of the clustering, and we want it to be as small as possible. The elbow method runs k-means clustering (kmeans number of clusters) on the dataset for a range of values of k (say 1 to 10) In the elbow method, we plot mean distance and look for the elbow point where the rate of decrease shifts. For each k, calculate the total within-cluster sum of squares (WSS). This elbow point can be used to determine K.

- Perform K-means clustering with all these different values of K. For each of the K values, we calculate average distances to the centroid across all data points.
- Plot these points and find the point where the average distance from the centroid falls suddenly (“Elbow”).

At first, clusters will give a lot of information (about variance), but at some point, the marginal gain will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the “elbow criterion”. This “elbow” can’t always be unambiguously identified.

**Inertia:** Sum of squared distances of samples to their closest cluster center.

we always do not have clear clustered data. This means that the elbow may not be clear and sharp.

Let us see the python code with the help of an example.

**Python Code:**

Visually we can see that the optimal number of clusters should be around 3. But *visualizing/visualization of the data alone cannot always give the right answer*.

```
Sum_of_squared_distances = []
K = range(1,10)
for num_clusters in K :
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data_frame)
Sum_of_squared_distances.append(kmeans.inertia_)
plt.plot(K,Sum_of_squared_distances,’bx-’)
plt.xlabel(‘Values of K’)
plt.ylabel(‘Sum of squared distances/Inertia’)
plt.title(‘Elbow Method For Optimal k’)
plt.show()
```

The curve looks like an elbow. In the above plot, the elbow is at k=3 (i.e., the Sum of squared distances falls suddenly), indicating the optimal k for this dataset is 3.

The silhouette coefficient or silhouette score kmeans is a measure of how similar a data point is within-cluster (cohesion) compared to other clusters (separation). The Silhouette score k means can be easily calculated in Python using the metrics module of the scikit-learn/sklearn library.

- Select a range of values of k (say 1 to 10).
- Plot Silhouette coefﬁcient for each value of K.

The equation for calculating the silhouette coefﬁcient for a particular data point:

- S(i) is the silhouette coefficient of the data point i.
- a(i) is the average distance between i and all the other data points in the cluster to which i belongs.
- b(i) is the average distance from i to all clusters to which i does not belong.

Source: medium

We will then calculate the average_silhouette for every k.

Then plot the graph between average_silhouette and K.

**Points to Remember While Calculating Silhouette Coefficient:**

- The value of the silhouette coefﬁcient is between [-1, 1].
- A score of 1 denotes the best, meaning that the data point i is very compact within the cluster to which it belongs and far away from the other clusters.
- The worst value is -1. Values near 0 denote overlapping clusters.

Let us see the python code with the help of an example.

```
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
silhouette_avg = []
for num_clusters in range_n_clusters:
# initialise kmeans
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data_frame)
cluster_labels = kmeans.labels_
# silhouette score
silhouette_avg.append(silhouette_score(data_frame, cluster_labels))plt.plot(range_n_clusters,silhouette_avg,’bx-’)
plt.xlabel(‘Values of K’)
plt.ylabel(‘Silhouette score’)
plt.title(‘Silhouette analysis For Optimal k’)
plt.show()
```

We see that the silhouette score is maximized at k = 3. So, we will take 3 clusters.

**NOTE:** The silhouette Method is used in combination with the Elbow Method for a more confident decision.

In k-means clustering, the number of clusters that you want to divide your data points into, i.e., the value of K has to be pre-determined, whereas in Hierarchical clustering, data is automatically formed into a tree shape form (dendrogram).

So how do we decide which clustering to select? We choose either of them depending on our problem statement and business requirement.

Hierarchical clustering gives you a deep insight into each step of converging different clusters and creates a dendrogram. It helps you to figure out which cluster combination makes more sense. The probabilistic models that identify the probability of having clusters in the overall population are considered mixture models. K-means is a fast and simple clustering method, but it can sometimes not capture inherent heterogeneity. K-means is simple and efficient, it is also used for image segmentation, and it gives good results for much more complex deep neural network algorithms.

The K-means clustering algorithm is an unsupervised algorithm that is used **to find clusters that have not been labeled in the dataset.** This can be used to confirm business assumptions about what types of groups exist or to identify unknown groups in complex data sets. In this tutorial, we learned about how to find optimal numbers of clusters.Also, you will get to Know about the Silhouette Score Kmeans , Which tell What that means and How to learn it .

**Key Takeaways**

- With clustering, data scientists can discover intrinsic grouping among unlabelled data.
- K-means is mostly used in the fields of customer insight, marketing, medical, and social media.

A. The silhouette coefficient may provide a more objective means to determine the optimal number of clusters. This is done by simply calculating the silhouette coefficient over a range of k, & identifying the peak as optimum K.

A. The optimal number of clusters k is one that maximizes the average silhouette over a range of possible values for k. Optimal of 2 clusters.

A. Optimal Value of K is usually found by square root N where N is the total number of samples.

KNN and k-means are both machine learning tools, but for different tasks.**KNN (classification/regression):** Learns from labeled data to predict labels or values for new data.**k-means (clustering):** Groups unlabeled data points into similar clusters.pen_spark

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

Become a full stack data scientist
##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

Understanding Cost Function
Understanding Gradient Descent
Math Behind Gradient Descent
Assumptions of Linear Regression
Implement Linear Regression from Scratch
Train Linear Regression in Python
Implementing Linear Regression in R
Diagnosing Residual Plots in Linear Regression Models
Generalized Linear Models
Introduction to Logistic Regression
Odds Ratio
Implementing Logistic Regression from Scratch
Introduction to Scikit-learn in Python
Train Logistic Regression in python
Multiclass using Logistic Regression
How to use Multinomial and Ordinal Logistic Regression in R ?
Challenges with Linear Regression
Introduction to Regularisation
Implementing Regularisation
Ridge Regression
Lasso Regression

Introduction to Stacking
Implementing Stacking
Variants of Stacking
Implementing Variants of Stacking
Introduction to Blending
Bootstrap Sampling
Introduction to Random Sampling
Hyper-parameters of Random Forest
Implementing Random Forest
Out-of-Bag (OOB) Score in the Random Forest
IPL Team Win Prediction Project Using Machine Learning
Introduction to Boosting
Gradient Boosting Algorithm
Math behind GBM
Implementing GBM in python
Regularized Greedy Forests
Extreme Gradient Boosting
Implementing XGBM in python
Tuning Hyperparameters of XGBoost in Python
Implement XGBM in R/H2O
Adaptive Boosting
Implementing Adaptive Boosing
LightGBM
Implementing LightGBM in Python
Catboost
Implementing Catboost in Python

Introduction to Clustering
Applications of Clustering
Evaluation Metrics for Clustering
Understanding K-Means
Implementation of K-Means in Python
Implementation of K-Means in R
Choosing Right Value for K
Profiling Market Segments using K-Means Clustering
Hierarchical Clustering
Implementation of Hierarchial Clustering
DBSCAN
Defining Similarity between clusters
Build Better and Accurate Clusters with Gaussian Mixture Models

Introduction to Machine Learning Interpretability
Framework and Interpretable Models
model Agnostic Methods for Interpretability
Implementing Interpretable Model
Understanding SHAP
Out-of-Core ML
Introduction to Interpretable Machine Learning Models
Model Agnostic Methods for Interpretability
Game Theory & Shapley Values

Deploying Machine Learning Model using Streamlit
Deploying ML Models in Docker
Deploy Using Streamlit
Deploy on Heroku
Deploy Using Netlify
Introduction to Amazon Sagemaker
Setting up Amazon SageMaker
Using SageMaker Endpoint to Generate Inference
Deploy on Microsoft Azure Cloud
Introduction to Flask for Model
Deploying ML model using Flask