Twitter Sentiment Analysis Using Python | Introduction & Techniques

Gunjan Last Updated : 24 Sep, 2024
11 min read

A Twitter sentiment analysis determines negative, positive, or neutral emotions within the text of a tweet using NLP and ML models. Sentiment analysis or opinion mining refers to identifying as well as classifying the sentiments that are expressed in the text source. Tweets are often useful in generating a vast amount of sentiment data upon analysis. These data are useful in understanding the opinion of people on social media for a variety of topics.

In this article, you will learn how to perform Twitter sentiment analysis using Python. We’ll explore a Twitter sentiment analysis project, analyze tweet sentiment, and use a Twitter sentiment analysis dataset for accurate sentiment analysis on Twitter.

This article was published as a part of the Data Science Blogathon.

What is Twitter Sentiment Analysis?

Twitter sentiment analysis analyzes the sentiment or emotion of tweets. It uses natural language processing and machine learning algorithms to classify tweets automatically as positive, negative, or neutral based on their content. It can be done for individual tweets or a larger dataset related to a particular topic or event.

Why is Twitter Sentiment Analysis Important?

  1. Understanding Customer Feedback: By analyzing the sentiment of customer feedback, companies can identify areas where they need to improve their products or services.
  2. Reputation Management: Sentiment analysis can help companies monitor their brand reputation online and quickly respond to negative comments or reviews.
  3. Political Analysis: Sentiment analysis can help political campaigns understand public opinion and tailor their messaging accordingly.
  4. Crisis Management: In the event of a crisis, sentiment analysis can help organizations monitor social media and news outlets for negative sentiment and respond appropriately.
  5. Marketing Research: Sentiment analysis can help marketers understand consumer behavior and preferences, and develop targeted advertising campaigns.

How to Do Twitter Sentiment Analysis Dataset?

In this article, we aim to analyze Twitter sentiment analysis Dataset using machine learning algorithms, the sentiment of tweets provided from the Sentiment140 dataset by developing a machine learning pipeline involving the use of three classifiers (Logistic Regression, Bernoulli Naive Bayes, and SVM)along with using Term Frequency- Inverse Document Frequency (TF-IDF). The performance of these classifiers is then evaluated using accuracy and F1 Scores.

For data preprocessing, we will be using Natural Language Processing’s (NLP) NLTK library.

Twitter Sentiment Analysis: Problem Statement

In this project, we try to implement an NLP Twitter sentiment analysis model that helps to overcome the challenges of sentiment classification of tweets. We will be classifying the tweets into positive or negative sentiments. The necessary details regarding the dataset involving the Twitter sentiment analysis project are:

The dataset provided is the Sentiment140 Dataset which consists of 1,600,000 tweets that have been extracted using the Twitter API. The various columns present in this Twitter data are:

  • target: the polarity of the tweet (positive or negative)
  • ids: Unique id of the tweet
  • date: the date of the tweet
  • flag: It refers to the query. If no such query exists, then it is NO QUERY.
  • user: It refers to the name of the user that tweeted
  • text: It refers to the text of the tweet

Twitter Sentiment Analysis Dataset: Project Pipeline

The various steps involved in the Machine Learning Pipeline are:

  • Import Necessary Dependencies
  • Read and Load the Dataset
  • Exploratory Data Analysis
  • Data Visualization of Target Variables
  • Data Preprocessing
  • Splitting our data into Train and Test sets.
  • Transforming Dataset using TF-IDF Vectorizer
  • Function for Model Evaluation
  • Model Building
  • Model Evaluation

Let’s get started,

Step-1: Import the Necessary Dependencies

# utilities
import re
import numpy as np
import pandas as pd
# plotting
import seaborn as sns
from wordcloud import WordCloud
import matplotlib.pyplot as plt
# nltk
from nltk.stem import WordNetLemmatizer
# sklearn
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import BernoulliNB
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import confusion_matrix, classification_report

Step-2: Read and Load the Dataset

# Importing the dataset
DATASET_COLUMNS=['target','ids','date','flag','user','text']
DATASET_ENCODING = "ISO-8859-1"
df = pd.read_csv('Project_Data.csv', encoding=DATASET_ENCODING, names=DATASET_COLUMNS)
df.sample(5)

Output:

sample data twitter sentiment analysis

Step-3: Exploratory Data Analysis

3.1: Five top records of data

df.head()

Output:

data head rows twitter sentiment analysis

3.2: Columns/features in data

df.columns

Output:

Index(['target', 'ids', 'date', 'flag', 'user', 'text'], dtype='object')

3.3: Length of the dataset

print('length of data is', len(df))

Output:

length of data is 1048576

3.4: Shape of data

df. shape

Output:

(1048576, 6)

3.5: Data information

df.info()

Output:

data info

3.6: Datatypes of all columns

df.dtypes

Output:

target     int64
ids        int64
date      object
flag      object
user      object
text      object
dtype: object

3.7: Checking for null values

np.sum(df.isnull().any(axis=1))

Output:

0

3.8: Rows and columns in the dataset

print('Count of columns in the data is:  ', len(df.columns))
print('Count of rows in the data is:  ', len(df))

Output:

Count of columns in the data is:   6
Count of rows in the data is:   1048576

3.9: Check unique target values

df['target'].unique()

Output:

array([0, 4], dtype=int64)

3.10: Check the number of target values

df['target'].nunique()

Output:

2

Step-4: Data Visualization of Target Variables

# Plotting the distribution for dataset.
ax = df.groupby('target').count().plot(kind='bar', title='Distribution of data',legend=False)
ax.set_xticklabels(['Negative','Positive'], rotation=0)
# Storing data in lists.
text, sentiment = list(df['text']), list(df['target'])

Output:

class imbalance twitter sentiment analysis
import seaborn as sns
sns.countplot(x='target', data=df)

Output:

target class

Step-5: Data Preprocessing

In the above-given problem statement, before training the model, we performed various pre-processing steps on the dataset that mainly dealt with removing stopwords, removing special characters like emojis, hashtags, etc. The text document is then converted into lowercase for better generalization.

Subsequently, the punctuations were cleaned and removed, thereby reducing the unnecessary noise from the dataset. After that, we also removed the repeating characters from the words along with removing the URLs as they do not have any significant importance.

At last, we then performed Stemming(reducing the words to their derived stems) and Lemmatization(reducing the derived words to their root form, known as lemma) for better results.

5.1: Selecting the text and Target column for our further analysis

data=df[['text','target']]

5.2: Replacing the values to ease understanding. (Assigning 1 to Positive sentiment 4)

data['target'] = data['target'].replace(4,1)

5.3: Printing unique values of target variables

data['target'].unique()

Output:

array([0, 1], dtype=int64)

5.4: Separating positive and negative tweets

data_pos = data[data['target'] == 1]
data_neg = data[data['target'] == 0]

5.5: Taking one-fourth of the data so we can run it on our machine easily

data_pos = data_pos.iloc[:int(20000)]
data_neg = data_neg.iloc[:int(20000)]

5.6: Combining positive and negative tweets

dataset = pd.concat([data_pos, data_neg])

5.7: Making statement text in lowercase

dataset['text']=dataset['text'].str.lower()
dataset['text'].tail()

Output:

lower case conversion

5.8: Defining set containing all stopwords in English.

stopwordlist = ['a', 'about', 'above', 'after', 'again', 'ain', 'all', 'am', 'an',
             'and','any','are', 'as', 'at', 'be', 'because', 'been', 'before',
             'being', 'below', 'between','both', 'by', 'can', 'd', 'did', 'do',
             'does', 'doing', 'down', 'during', 'each','few', 'for', 'from',
             'further', 'had', 'has', 'have', 'having', 'he', 'her', 'here',
             'hers', 'herself', 'him', 'himself', 'his', 'how', 'i', 'if', 'in',
             'into','is', 'it', 'its', 'itself', 'just', 'll', 'm', 'ma',
             'me', 'more', 'most','my', 'myself', 'now', 'o', 'of', 'on', 'once',
             'only', 'or', 'other', 'our', 'ours','ourselves', 'out', 'own', 're','s', 'same', 'she', "shes", 'should', "shouldve",'so', 'some', 'such',
             't', 'than', 'that', "thatll", 'the', 'their', 'theirs', 'them',
             'themselves', 'then', 'there', 'these', 'they', 'this', 'those',
             'through', 'to', 'too','under', 'until', 'up', 've', 'very', 'was',
             'we', 'were', 'what', 'when', 'where','which','while', 'who', 'whom',
             'why', 'will', 'with', 'won', 'y', 'you', "youd","youll", "youre",
             "youve", 'your', 'yours', 'yourself', 'yourselves']

5.9: Cleaning and removing the above stop words list from the tweet text

STOPWORDS = set(stopwordlist)
def cleaning_stopwords(text):
    return " ".join([word for word in str(text).split() if word not in STOPWORDS])
dataset['text'] = dataset['text'].apply(lambda text: cleaning_stopwords(text))
dataset['text'].head()

Output:

stop words removal

5.10: Cleaning and removing punctuations

import string
english_punctuations = string.punctuation
punctuations_list = english_punctuations
def cleaning_punctuations(text):
    translator = str.maketrans('', '', punctuations_list)
    return text.translate(translator)
dataset['text']= dataset['text'].apply(lambda x: cleaning_punctuations(x))
dataset['text'].tail()

Output:

punctuation removal twitter sentiment analysis

5.11: Cleaning and removing repeating characters

def cleaning_repeating_char(text):
    return re.sub(r'(.)1+', r'1', text)
dataset['text'] = dataset['text'].apply(lambda x: cleaning_repeating_char(x))
dataset['text'].tail()

Output:

remove repting characters

5.12: Cleaning and removing URLs

def cleaning_URLs(data):
    return re.sub('((www.[^s]+)|(https?://[^s]+))',' ',data)
dataset['text'] = dataset['text'].apply(lambda x: cleaning_URLs(x))
dataset['text'].tail()

Output:

remove url twitter sentiment analysis

5.13: Cleaning and removing numeric numbers

def cleaning_numbers(data):
    return re.sub('[0-9]+', '', data)
dataset['text'] = dataset['text'].apply(lambda x: cleaning_numbers(x))
dataset['text'].tail()

Output:

remove numbers twitter sentiment analysis

5.14: Getting tokenization of tweet text

from nltk.tokenize import RegexpTokenizer
tokenizer = RegexpTokenizer(r'w+')
dataset['text'] = dataset['text'].apply(tokenizer.tokenize)
dataset['text'].head()

Output:

tokanization twitter sentiment analysis

5.15: Applying stemming

import nltk
st = nltk.PorterStemmer()
def stemming_on_text(data):
    text = [st.stem(word) for word in data]
    return data
dataset['text']= dataset['text'].apply(lambda x: stemming_on_text(x))
dataset['text'].head()

Output:

stemming

5.16: Applying lemmatizer

lm = nltk.WordNetLemmatizer()
def lemmatizer_on_text(data):
    text = [lm.lemmatize(word) for word in data]
    return data
dataset['text'] = dataset['text'].apply(lambda x: lemmatizer_on_text(x))
dataset['text'].head()

Output:

lemmatization

5.17: Separating input feature and label

X=data.text
y=data.target

5.18: Plot a cloud of words for negative tweets

data_neg = data['text'][:800000]
plt.figure(figsize = (20,20))
wc = WordCloud(max_words = 1000 , width = 1600 , height = 800,
               collocations=False).generate(" ".join(data_neg))
plt.imshow(wc)

Output:

wordcloud twitter sentiment analysis

5.19: Plot a cloud of words for positive tweets

data_pos = data['text'][800000:]
wc = WordCloud(max_words = 1000 , width = 1600 , height = 800,
              collocations=False).generate(" ".join(data_pos))
plt.figure(figsize = (20,20))
plt.imshow(wc)

Output:

wordcloud

Step-6: Splitting Our Data Into Train and Test Subsets

# Separating the 95% data for training data and 5% for testing data
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.05, random_state =26105111)

Step-7: Transforming the Dataset Using TF-IDF Vectorizer

7.1: Fit the TF-IDF Vectorizer

vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
vectoriser.fit(X_train)
print('No. of feature_words: ', len(vectoriser.get_feature_names()))

Output:

No. of feature_words:  500000

7.2: Transform the data using TF-IDF Vectorizer

X_train = vectoriser.transform(X_train)
X_test  = vectoriser.transform(X_test)

Step-8: Function for Model Evaluation

After training the model, we then apply the evaluation measures to check how the model is performing. Accordingly, we use the following evaluation parameters to check the performance of the models respectively:

  • Accuracy Score
  • Confusion Matrix with Plot
  • ROC-AUC Curve
def model_Evaluate(model):
# Predict values for Test dataset
y_pred = model.predict(X_test)
# Print the evaluation metrics for the dataset.
print(classification_report(y_test, y_pred))
# Compute and plot the Confusion matrix
cf_matrix = confusion_matrix(y_test, y_pred)
categories = ['Negative','Positive']
group_names = ['True Neg','False Pos', 'False Neg','True Pos']
group_percentages = ['{0:.2%}'.format(value) for value in cf_matrix.flatten() / np.sum(cf_matrix)]
labels = [f'{v1}n{v2}' for v1, v2 in zip(group_names,group_percentages)]
labels = np.asarray(labels).reshape(2,2)
sns.heatmap(cf_matrix, annot = labels, cmap = 'Blues',fmt = '',
xticklabels = categories, yticklabels = categories)
plt.xlabel("Predicted values", fontdict = {'size':14}, labelpad = 10)
plt.ylabel("Actual values" , fontdict = {'size':14}, labelpad = 10)
plt.title ("Confusion Matrix", fontdict = {'size':18}, pad = 20)

Step-9: Model Building

In the problem statement, we have used three different models respectively :

  • Bernoulli Naive Bayes Classifier
  • SVM (Support Vector Machine)
  • Logistic Regression

The idea behind choosing these models is that we want to try all the classifiers on the dataset ranging from simple ones to complex models, and then try to find out the one which gives the best performance among them.

8.1: Model-1

BNBmodel = BernoulliNB()
BNBmodel.fit(X_train, y_train)
model_Evaluate(BNBmodel)
y_pred1 = BNBmodel.predict(X_test)

Output:

model 1 evaluation twitter sentiment analysis

8.2: Plot the ROC-AUC Curve for model-1

from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred1)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=1, label='ROC curve (area = %0.2f)' % roc_auc)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC CURVE')
plt.legend(loc="lower right")
plt.show()

Output:

roc curve

8.3: Model-2:

SVCmodel = LinearSVC()
SVCmodel.fit(X_train, y_train)
model_Evaluate(SVCmodel)
y_pred2 = SVCmodel.predict(X_test)

Output:

evaluation model 2 twitter sentiment analysis

8.4: Plot the ROC-AUC Curve for model-2

from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred2)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=1, label='ROC curve (area = %0.2f)' % roc_auc)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC CURVE')
plt.legend(loc="lower right")
plt.show()

Output:

roc

8.5: Model-3

LRmodel = LogisticRegression(C = 2, max_iter = 1000, n_jobs=-1)
LRmodel.fit(X_train, y_train)
model_Evaluate(LRmodel)
y_pred3 = LRmodel.predict(X_test)

Output:

model 3

8.6: Plot the ROC-AUC Curve for model-3

from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred3)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=1, label='ROC curve (area = %0.2f)' % roc_auc)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC CURVE')
plt.legend(loc="lower right")
plt.show()

Output:

roc 3 twitter sentiment analysis

Step-10: Model Evaluation

Upon evaluating all the models, we can conclude the following details i.e.

Accuracy: As far as the accuracy of the model is concerned, Logistic Regression performs better than SVM, which in turn performs better than Bernoulli Naive Bayes.

F1-score: The F1 Scores for class 0 and class 1 are :
(a) For class 0: Bernoulli Naive Bayes(accuracy = 0.90) < SVM (accuracy =0.91) < Logistic Regression (accuracy = 0.92)
(b) For class 1: Bernoulli Naive Bayes (accuracy = 0.66) < SVM (accuracy = 0.68) < Logistic Regression (accuracy = 0.69)

AUC Score: All three models have the same ROC-AUC score.

We, therefore, conclude that the Logistic Regression is the best model for the above-given dataset.

In our problem statement, Logistic Regression follows the principle of Occam’s Razor, which defines that for a particular problem statement, if the data has no assumption, then the simplest model works the best. Since our dataset does not have any assumptions and Logistic Regression is a simple model. Therefore, the concept holds true for the above-mentioned dataset.

Conclusion

We hope through this article, you got a basic of how twiiter Sentimental Analysis is used to understand public emotions behind people’s tweets. As you’ve read in this article, Twitter Sentimental Analysis dataset helps us preprocess the data (tweets) using different methods and feed it into ML models to give the best accuracy.

Hope you like the article! Twitter sentiment analysis is a powerful tool for understanding public opinion. A Twitter sentiment analysis project using Python helps analyze tweet sentiment. A quality Twitter sentiment analysis dataset enhances sentiment analysis on Twitter.

Key Takeaways

  • Twitter Sentimental Analysis is used to identify as well as classify the sentiments that are expressed in the text source.
  • Logistic Regression, SVM, and Naive Bayes are some of the ML algorithms that can be used for Twitter Sentimental Analysis Python.
Q1. What are the use cases of Sentimental Analysis models in the real world?

A. Sentimental Analysis models are used in various industries for different purposes. Some examples are:

1. Using these models, we can get people’s opinions on social media platforms or social networking sites regarding specific topics.
2. Companies use these models to know the success or failure of their product by analyzing the sentiment of the product reviews and feedback from the people.
3. Health industries use these models for the text analysis of patients’ feedback and improve their services based on that.
4. We can also find new marketing trends and customer preferences using these models.

Q2. What are the steps for sentiment analysis of Twitter data in Python?

A. Given below are the steps for implementing Sentiment Analysis of Twitter in Python:

1. Firstly we will gather the required Tweets from Twitter.
2. We will clean the data using different pre-processing techniques.
3. After cleaning the data, we will create the sentimental analysis model using different machine learning algorithms.
4. We will analyze our Twitter data using our sentiment analysis model on the basis of sentiment score, i.e., a positive, negative, or neutral tweet.
5. Eventually, we will visualize the output from our model.

Q3. Which algorithm is used in Twitter sentiment analysis?

A. Machine Learning algorithms like Naive Bayes, Logistic Regression, SVM, and deep learning algorithms like RNN can be used to create Twitter Sentiment Analysis.

The media shown in this article are not owned by Analytics Vidhya and are used at the Author’s discretion.

Responses From Readers

Clear

Alexander
Alexander

I'd like to know more about how the ground-truth of the dataset was determined. Did humans read and annotate all 1.6 million tweets? If yes, how many people needed to agree on a tweet's sentiment before it was labeled? Just 1 person? Best 2 out of 3? 3 out of 5? What about tweets that were decidedly neutral (not positive AND not negative)? Such tweets do in fact exist. Were such tweets removed from the data? Or forced into a binary categorization? Would love any details or links you have about the underlying dataset that was used.

Shivam
Shivam

How to give one tweet to check that whether it is positive or negative??

Thejaswini N
Thejaswini N

really very informative , but while running code faceing some issue help me out to fix it

Lokendra Yadav
Lokendra Yadav

hello mam, above article is too good, helpful for me to understand end to end projects using NLP and machine learning both, thanks a lot, mam

Lokendra Yadav
Lokendra Yadav

mam when we have 1600000 data the why in the above article is showing only 1048576. please clearify

Pinnaka Revanth Chowdary
Pinnaka Revanth Chowdary

hello mam please upload the dataset

Ayush Verma
Ayush Verma

The data has imbalanced classes which have not been balanced as we can see the number of data with negative is 4 times more than positive. This is the reason that your model has an F1 score of about 65% for class type 1. You need to apply over-sampling and under-sampling to make them equal or collect more positive data.

Marina
Marina

How did you get the target variable? And the original dataset? Is it from twitter API?

Prateek
Prateek

TFidfVectorizer has an issue. Please submit a solution.

prerna
prerna

mam please can i have the source code file?

Sandeep Thukral
Sandeep Thukral

Hi , from where we can find dataset? can anybody share the link

Congratulations, You Did It!
Well Done on Completing Your Learning Journey. Stay curious and keep exploring!

We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.

Show details